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Welcome

Theano is a Python library that allows you to define, optimize, and
evaluate mathematical expressions involving multi-dimensional
arrays efficiently. Theano features:


	tight integration with NumPy – Use numpy.ndarray in Theano-compiled functions.

	transparent use of a GPU – Perform data-intensive calculations up to 140x faster than with CPU.(float32 only)

	efficient symbolic differentiation – Theano does your derivatives for function with one or many inputs.

	speed and stability optimizations – Get the right answer for log(1+x) even when x is really tiny.

	dynamic C code generation – Evaluate expressions faster.

	extensive unit-testing and self-verification – Detect and diagnose many types of mistake.



Theano has been powering large-scale computationally intensive
scientific investigations since 2007.  But it is also approachable
enough to be used in the classroom (IFT6266 at the University of
Montreal).




News


	We support cuDNN [http://deeplearning.net/software/theano/library/sandbox/cuda/dnn.html] if it is installed by the user.

	Open Machine Learning Workshop 2014 presentation.

	Colin Raffel tutorial on Theano [http://nbviewer.ipython.org/github/craffel/theano-tutorial/blob/master/Theano%20Tutorial.ipynb].

	Ian Goodfellow did a 12h class with exercises on Theano [https://github.com/goodfeli/theano_exercises].

	Theano 0.6 was released. Everybody is encouraged to update.

	New technical report on Theano: Theano: new features and speed improvements [http://arxiv.org/abs/1211.5590].

	HPCS 2011 Tutorial [http://www.iro.umontreal.ca/~lisa/pointeurs/tutorial_hpcs2011_fixed.pdf].
We included a few fixes discovered while doing the Tutorial.



[image: _images/talk2010.png]
You can watch a quick (20 minute) introduction to Theano given as a talk at SciPy 2010 [http://conference.scipy.org/scipy2010/] via streaming (or downloaded) video:


Transparent GPU Computing With Theano [http://www.archive.org/details/Scipy2010-JamesBergstra-TransparentGpuComputingWithTheano].
James Bergstra, SciPy 2010, June 30, 2010.





Download

Theano is now available on PyPI [http://pypi.python.org/pypi/Theano], and can be installed via easy_install
Theano, pip install Theano or by downloading and unpacking the tarball
and typing python setup.py install.

Those interested in bleeding-edge features should obtain the latest development
version, available via:

git clone git://github.com/Theano/Theano.git





You can then place the checkout directory on your $PYTHONPATH or use
python setup.py develop to install a .pth into your site-packages
directory, so that when you pull updates via Git, they will be
automatically reflected the “installed” version. For more information about
installation and configuration, see installing Theano.




Status

[image: Latest PyPI version][image: Number of PyPI downloads]


Citing Theano

If you use Theano for academic research, you are highly encouraged (though not
required) to cite the following two papers:


	F. Bastien, P. Lamblin, R. Pascanu, J. Bergstra, I. Goodfellow,
A. Bergeron, N. Bouchard, D. Warde-Farley and Y. Bengio.
“Theano: new features and speed improvements” [http://arxiv.org/pdf/1211.5590.pdf].
NIPS 2012 deep learning workshop. (BibTex [http://www.iro.umontreal.ca/~lisa/publications2/index.php/export/publication/551/bibtex])

	J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R.
Pascanu, G. Desjardins, J. Turian, D. Warde-Farley and Y.
Bengio. “Theano: A CPU and GPU Math Expression Compiler” [http://www.iro.umontreal.ca/~lisa/pointeurs/theano_scipy2010.pdf].
Proceedings of the Python for Scientific Computing Conference (SciPy)
2010. June 30 - July 3, Austin, TX (BibTeX [http://www.iro.umontreal.ca/~lisa/publications2/index.php/export/publication/461/bibtex])



Theano is primarily developed by academics, and so citations matter a lot to
us. As an added benefit, you increase Theano’s exposure and potential user
(and developer) base, which is to the benefit of all users of Theano. Thanks
in advance!

See our Theano Citation Policy for details.




Documentation

Roughly in order of what you’ll want to check out:


	Installing Theano – How to install Theano.

	Theano at a Glance – What is Theano?

	Tutorial – Learn the basics.

	Library Documentation – Theano’s functionality, module by module.

	Frequently Asked Questions – A set of commonly asked questions.

	Optimizations – Guide to Theano’s graph optimizations.

	Extending Theano – Learn to add a Type, Op, or graph optimization.

	Developer Start Guide – How to contribute code to Theano.

	Theano Design and Implementation Documentation – Primarily of interest to developers of Theano

	Internal Documentation – How to maintain Theano, LISA-specific tips, and more...

	Release – How our release should work.

	Acknowledgements – What we took from other projects.

	Related Projects [https://github.com/Theano/Theano/wiki/Related-projects] – link to other projects that implement new functionalities on top of Theano



You can download the latest PDF documentation [http://deeplearning.net/software/theano/theano.pdf], rather than reading it online.

Check out how Theano can be used for Machine Learning: Deep Learning Tutorials [http://www.deeplearning.net/tutorial].

Theano was featured at SciPy 2010 [http://www.iro.umontreal.ca/~lisa/publications2/index.php/publications/show/461].




Community


“Thank YOU for correcting it so quickly. I wish all packages I worked
with would have such an active maintenance - this is as good as it
gets :-)”

(theano-users, Aug 2, 2010)





	Register to theano-announce [http://groups.google.com/group/theano-announce] if you want to be kept informed on important change on theano(low volume).

	Register and post to theano-users [http://groups.google.com/group/theano-users] if you want to talk to all Theano users.

	Register and post to theano-dev [http://groups.google.com/group/theano-dev] if you want to talk to the developers.

	Register to theano-github [http://groups.google.com/group/theano-github] if you want to receive an email for all changes to the GitHub repository.

	Register to theano-buildbot [http://groups.google.com/group/theano-buildbot] if you want to receive our daily buildbot email.

	Ask/view questions/answers at metaoptimize/qa/tags/theano [http://metaoptimize.com/qa/tags/theano/] (it’s like stack overflow for machine learning)

	We use Github tickets [http://github.com/Theano/Theano/issues] to keep track of issues
(however, some old tickets can still be found on
Assembla [http://www.assembla.com/spaces/theano/tickets]).

	Come visit us in Montreal! Most developers are students in the LISA [http://www.iro.umontreal.ca/~lisa] group at the University of Montreal [http://www.umontreal.ca].
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Release Notes


Theano 0.7 (26th of March, 2015)

We recommand to everyone to upgrade to this version.


	Highlights:

	
	Integration of CuDNN for 2D convolutions and pooling on supported GPUs

	Too many optimizations and new features to count

	Various fixes and improvements to scan

	Better support for GPU on Windows

	On Mac OS X, clang is used by default

	Many crash fixes

	Some bug fixes as well
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Theano at a Glance

Theano is a Python library that lets you to define, optimize, and evaluate
mathematical expressions, especially ones with multi-dimensional arrays
(numpy.ndarray).  Using Theano it is
possible to attain speeds rivaling hand-crafted C implementations for problems
involving large amounts of data.  It can also surpass C on a CPU by many orders
of magnitude by taking advantage of recent GPUs.

Theano combines aspects of a computer algebra system (CAS) with aspects of an
optimizing compiler. It can also generate customized C code for many
mathematical operations.  This combination of CAS with optimizing compilation
is particularly useful for tasks in which complicated mathematical expressions
are evaluated repeatedly and evaluation speed is critical.  For situations
where many different expressions are each evaluated once Theano can minimize
the amount of compilation/analysis overhead, but still provide symbolic
features such as automatic differentiation.

Theano’s compiler applies many optimizations of varying complexity to
these symbolic expressions. These optimizations include, but are not
limited to:


	use of GPU for computations

	constant folding

	merging of similar subgraphs, to avoid redundant calculation

	arithmetic simplification (e.g. x*y/x -> y, --x -> x)

	inserting efficient BLAS [http://en.wikipedia.org/wiki/Basic_Linear_Algebra_Subprograms] operations (e.g. GEMM) in a variety of
contexts

	using memory aliasing to avoid calculation

	using inplace operations wherever it does not interfere with aliasing

	loop fusion for elementwise sub-expressions

	improvements to numerical stability (e.g.  [image: \log(1+\exp(x))] and [image: \log(\sum_i \exp(x[i]))])

	for a complete list, see Optimizations



Theano was written at the LISA [http://www.iro.umontreal.ca/rubrique.php3?id_rubrique=27] lab to support rapid development of
efficient machine learning algorithms. Theano is
named after the Greek mathematician [http://en.wikipedia.org/wiki/Theano_(mathematician)], who may have been Pythagoras’
wife.  Theano is released under a BSD license (link).


Sneak peek

Here is an example of how to use Theano. It doesn’t show off many of
Theano’s features, but it illustrates concretely what Theano is.

import theano
from theano import tensor

# declare two symbolic floating-point scalars
a = tensor.dscalar()
b = tensor.dscalar()

# create a simple expression
c = a + b

# convert the expression into a callable object that takes (a,b)
# values as input and computes a value for c
f = theano.function([a,b], c)

# bind 1.5 to 'a', 2.5 to 'b', and evaluate 'c'
assert 4.0 == f(1.5, 2.5)





Theano is not a programming language in the normal sense because you
write a program in Python that builds expressions for Theano. Still it
is like a programming language in the sense that you have to


	declare variables (a,b) and give their types

	build expressions for how to put those variables together

	compile expression graphs to functions in order to use them for computation.



It is good to think of theano.function as the interface to a
compiler which builds a callable object from a purely symbolic graph.
One of Theano’s most important features is that theano.function
can optimize a graph and even compile some or all of it into native
machine instructions.




What does it do that they don’t?

Theano is a Python library and optimizing compiler for manipulating
and evaluating expressions, especially matrix-valued
ones. Manipulation of matrices is typically done using the numpy
package, so what does Theano do that Python and numpy do not?


	execution speed optimizations: Theano can use g++ or nvcc to compile
parts your expression graph into CPU or GPU instructions, which run
much faster than pure Python.

	symbolic differentiation: Theano can automatically build symbolic graphs
for computing gradients.

	stability optimizations: Theano can recognize [some] numerically unstable
expressions and compute them with more stable algorithms.



The closest Python package to Theano is sympy [http://code.google.com/p/sympy/].
Theano focuses more on tensor expressions than Sympy, and has more machinery
for compilation.  Sympy has more sophisticated algebra rules and can
handle a wider variety of mathematical operations (such as series, limits, and integrals).

If numpy [http://numpy.scipy.org/] is to be compared to MATLAB [http://www.mathworks.com/products/matlab/] and sympy [http://code.google.com/p/sympy/] to Mathematica [http://www.wolfram.com/products/mathematica/index.html],
Theano is a sort of hybrid of the two which tries to combine the best of
both worlds.




Getting started


	Installing Theano

	Instructions to download and install Theano on your system.

	Tutorial

	Getting started with Theano’s basic features. Go here if you are
new!

	Library Documentation

	Details of what Theano provides. It is recommended to go through
the Tutorial first though.



A PDF version of the online documentation may be found here [http://deeplearning.net/software/theano/theano.pdf].




Theano Vision

This is the vision we have for Theano. This is give people an idea of what to
expect in the future of Theano, but we can’t promise to implement all
of it. This should also help you to understand where Theano fits in relation
to other computational tools.


	Support tensor and sparse operations



	Support linear algebra operations



	
	Graph Transformations

	
	Differentiation/higher order differentiation

	‘R’ and ‘L’ differential operators

	Speed/memory optimizations

	Numerical stability optimizations









	Can use many compiled languages, instructions sets: C/C++, CUDA, OpenCL, PTX, CAL, AVX, ...



	Lazy evaluation



	Loop



	Parallel execution (SIMD, multi-core, multi-node on cluster,
multi-node distributed)



	Support all NumPy/basic SciPy functionality



	Easy wrapping of library functions in Theano





Note: There is no short term plan to support multi-node computation.




Theano Vision State

Here is the state of that vision as of December 3th, 2013 (after Theano release
0.6):


	We support tensors using the numpy.ndarray object and we support many operations on them.

	We support sparse types by using the scipy.{csc,csr,bsr}_matrix object and support some operations on them.

	We have started implementing/wrapping more advanced linear algebra operations.

	We have many graph transformations that cover the 4 categories listed above.

	We can improve the graph transformation with better storage optimization
and instruction selection.
	Similar to auto-tuning during the optimization phase, but this
doesn’t apply to only 1 op.

	Example of use: Determine if we should move computation to the
GPU or not depending on the input size.

	Possible implementation note: allow Theano Variable in the fgraph to
have more than 1 owner.





	We have a CUDA backend for tensors of type float32 only.

	Efforts have begun towards a generic GPU ndarray (GPU tensor) (started in the
libgpuarray [https://github.com/Theano/libgpuarray] project)
	Move GPU backend outside of Theano.

	Will provide better support for GPU on Windows and support an OpenCL backend on CPU.





	Loops work, but not all related optimizations are currently done.

	The cvm linker allows lazy evaluation. It is the current default linker.
	How to have DebugMode check it? Right now, DebugMode checks the computation non-lazily.





	SIMD parallelism on the CPU comes from the compiler.

	Multi-core parallelism support limited.
If the external BLAS implementation supports it,
many dot are parallelized via gemm, gemv and ger.
Also, element-wise operation are supported. See Multi cores support in Theano.

	No multi-node support.

	Most, but not all NumPy functions/aliases are implemented.
* https://github.com/Theano/Theano/issues/1080

	Wrapping an existing Python function in easy and documented.

	We know how to separate the shared variable memory
storage location from its object type (tensor, sparse, dtype, broadcast
flags), but we need to do it.






Contact us

Discussion about Theano takes place in the theano-dev [http://groups.google.com/group/theano-dev?pli=1] and
theano-users [http://groups.google.com/group/theano-users?pli=1] mailing lists. People interested in development of
Theano should check the former, while the latter is reserved for
issues that concern the end users.

Questions, comments, praise, criticism as well as bug reports should
be submitted to these mailing lists.

We welcome all kinds of contributions. If you have any questions
regarding how to extend Theano, please feel free to ask on the
theano-dev [http://groups.google.com/group/theano-dev?pli=1] mailing list.
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Installing Theano


Note

If you are a member of LISA Labo, have a look at LISA Labo specific instructions for
lab-specific installation instructions.




Requirements

In order to use Theano, the following libraries and software will need
to be installed (MacOS and Windows users should refer to platform-specific
instructions below for detailed installation steps):



	Linux, Mac OS X or Windows operating system

	We develop mainly on 64-bit Linux machines. other architectures are
not well-tested.

	Python [http://www.python.org/] >= 2.6

	The development package (python-dev or python-devel
on most Linux distributions) is recommended (see just below).
Python 2.4 was supported up to and including the release 0.6.
Python 3 is supported via 2to3 only, starting from 3.3.

	g++, python-dev

	Not technically required but highly recommended, in order to compile
generated C code. Theano can fall back on a NumPy-based Python execution
model, but a C compiler allows for vastly faster execution.
g++ >= 4.2 (for openmp that is currently always used)
more recent version recommended!

	NumPy [http://numpy.scipy.org/] >= 1.6.2

	Earlier versions could work, but we don’t test it.

	SciPy [http://scipy.org] >= 0.11

	Only currently required for sparse matrix and special functions
support, but highly recommended. SciPy >=0.8 could work,
but earlier versions have known bugs with sparse matrices.

	A BLAS [http://en.wikipedia.org/wiki/Basic_Linear_Algebra_Subprograms] installation (with Level 3 functionality)

	Including the development headers (-dev, -devel, depending on
your Linux distribution). Mac OS X comes with the Accelerate
framework [http://developer.apple.com/performance/accelerateframework.html] built in, and various options exist for Windows (see
below).






The following libraries and software are optional:



	nose [http://somethingaboutorange.com/mrl/projects/nose/]

	Recommended, to run Theano’s test-suite.

	Sphinx [http://sphinx.pocoo.org/] >= 0.5.1, pygments [http://pygments.org/]

	For building the documentation. LaTeX [http://www.latex-project.org/] and dvipng [http://savannah.nongnu.org/projects/dvipng/] are also necessary
for math to show up as images.

	Git [http://git-scm.com]

	To download bleeding-edge versions of Theano.

	pydot [https://code.google.com/p/pydot/]

	To be able to make picture of Theano computation graph.

	NVIDIA CUDA drivers and SDK [http://developer.nvidia.com/object/gpucomputing.html]

	Required for GPU code generation/execution on NVIDIA gpus

	libgpuarray [http://deeplearning.net/software/libgpuarray/installation.html]

	Required for GPU/CPU code generation on CUDA and OpenCL devices (see: GpuArray Backend.)





	note:	OpenCL support is still minimal for now.















Linux


CentOS 6

Easy Installation of an optimized Theano on CentOS 6 provides instructions on how to install Theano on CentOS
6, written by the Theano developers. It covers how to install Theano (for
CPU-based computation only) with the distribution-packaged ATLAS, a free fast
implementation of BLAS.




Ubuntu

Easy Installation of an Optimized Theano on Current Ubuntu provides instructions on how to install Theano
on Ubuntu. It covers how to install Theano with the
distribution-packaged OpenBlas or ATLAS. Both are free fast
implementation of BLAS.




Alternative installation on Gentoo

Brian Vandenberg emailed installation instructions on Gentoo [http://groups.google.com/d/msg/theano-dev/-8WCMn2FMR0/bJPasoZXaqoJ],
focusing on how to install the appropriate dependencies.

Nicolas Pinto provides ebuild scripts [https://github.com/npinto/sekyfsr-gentoo-overlay/tree/master/sci-libs/Theano].




Alternative installation on Mandriva 2010.2

A contributor made rpm package for Mandriva [http://mib.pianetalinux.org/mib/quick/basic-rpms/mib-rpms/975-theano-031] 2010.2 of Theano 0.3.1.




Basic user install instructions

The easiest way to obtain the released version of Theano is from PyPI using
pip [http://pypi.python.org/pypi/pip] (a replacement for easy_install [http://packages.python.org/distribute/easy_install.html] provided by setuptools [http://pypi.python.org/pypi/setuptools]/distribute [http://packages.python.org/distribute/])
by typing

pip install Theano





You may need to add sudo  before this command to install into your
system’s site-packages directory. If you do not have administrator access
to your machine, you can install Theano locally (to ~/.local) using

pip install Theano --user





Alternatively you can use virtualenv [http://pypi.python.org/pypi/virtualenv] to create an isolated site-packages
directory; see the virtualenv documentation [http://virtualenv.openplans.org/] for details.


Note

Theano can be installed with easy_install [http://packages.python.org/distribute/easy_install.html], however we recommend pip [http://pypi.python.org/pypi/pip].
pip offers many benefits over
easy_install such as more intelligent dependency management, better
error messages and a pip uninstall command for easily removing
packages.

If you do not have pip installed but do have easy_install, you can
get pip by simply typing easy_install pip.






Updating Theano

The following command will update only Theano:

sudo pip install --upgrade --no-deps theano





The following command will update Theano and Numpy/Scipy (warning bellow):

sudo pip install --upgrade theano





If you installed NumPy/SciPy with yum/apt-get, updating NumPy/SciPy
with pip/easy_install is not always a good idea. This can make Theano
crash due to problems with BLAS (but see below). The versions of
NumPy/SciPy in the distribution are sometimes linked against faster
versions of BLAS. Installing NumPy/SciPy with
yum/apt-get/pip/easy_install won’t install the development package
needed to recompile it with the fast version. This mean that if you
don’t install the development packages manually, when you recompile
the updated NumPy/SciPy, it will compile with the slower version. This
results in a slower Theano as well. To fix the crash, you can clear
the Theano cache like this:

theano-cache clear








Bleeding-edge install instructions

Master Tests Status:

[image: https://secure.travis-ci.org/Theano/Theano.png?branch=master]
 [http://travis-ci.org/Theano/Theano/builds]If you are a developer of Theano, then check out the Developer Start Guide.

If you want the bleeding-edge without developing the code you can use pip for
this with the command line below. Note that it will also try to install Theano’s dependencies
(like NumPy and SciPy), but not upgrade them. If you wish to upgrade them,
remove the --no-deps switch to it, but go see a previous warning before doing this.

pip install --upgrade --no-deps git+git://github.com/Theano/Theano.git





or (if you want to install it for the current user only):

pip install --upgrade --no-deps git+git://github.com/Theano/Theano.git --user





The following are general instructions that will set you up with the
bleeding-edge version of Theano and allow you to hack it. First,
get the code using Git [http://git-scm.com]:

git clone git://github.com/Theano/Theano.git





From here, the easiest way to get started is (this requires setuptools [http://pypi.python.org/pypi/setuptools] or distribute [http://packages.python.org/distribute/] to be installed):

cd Theano
python setup.py develop






Note

“python setup.py develop ...” does not work on Python 3 as it does not call
the converter from Python 2 code to Python 3 code.



This will install a .pth file in your site-packages directory that
tells Python where to look for your Theano installation (i.e. in the
directory your just checked out of Github). Using develop mode is
preferable to install as any modifications you make in the checkout
directory (or changes you pull with Git) will be automatically reflected
in the “installed” version without re-running python setup.py install.

If you do not have permission to modify your site-packages directory you
can specify an alternative installation prefix using

python setup.py develop --prefix=~/.local





A common choice is ~/.local which is automatically searched for Python >=
2.6; for earlier Python versions and other installation prefixes, the prefix
specified must contain lib/pythonA.B/site-packages, where A.B is e.g.
2.5, and this site-packages directory must be listed in PYTHONPATH.

An alternative, perhaps simpler way of creating and using an isolated
site-packages is to use virtualenv [http://pypi.python.org/pypi/virtualenv]; see the virtualenv documentation [http://virtualenv.openplans.org/]
for details. If you find yourself using virtualenv frequently you may find the
virtualenvwrapper [http://www.doughellmann.com/projects/virtualenvwrapper/] package useful for switching between them.


Configuring PYTHONPATH

If import theano does not work in Python, you may need modify the
environment variable PYTHONPATH accordingly.
In bash, you may do this:

export PYTHONPATH=<new location to add>:$PYTHONPATH





In csh:

setenv PYTHONPATH <new location to add>:$PYTHONPATH





To make this change stick you will usually need to add the above command to
your shell’s startup script, i.e. ~/.bashrc or ~/.cshrc.
Consult your shell’s documentation for details.




Updating

To update your library to the latest revision, change directory (cd)
to your Theano folder and execute the following command:

git pull





You should update frequently, bugs are fixed on a very regular basis.






Testing your installation

Once you have installed Theano, you should run the test suite. At
a Python (or IPython) interpreter,

>>> import theano
>>> theano.test() 





You can also run them in-place from the Git checkout directory by typing

theano-nose





You should be able to execute it if you followed the instructions above.
If theano-nose is not found by your shell, you will need to add
Theano/bin to your PATH environment variable.


Note

In Theano versions <= 0.5, theano-nose was not included.  If you
are working with such a version, you can call nosetests instead
of theano-nose. In that case, some tests will fail by raising
the KnownFailureTest Exception, and will be considered as errors,
but they are nothing to worry about.




Note

The tests should be run with the configuration option device
set to cpu (default). If you need to change this value,
you can do that by setting the THEANO_FLAGS environment variable,
by prefixing the theano-nose command with THEANO_FLAGS=device=cpu.
If you have a GPU, it will automatically be used to run GPU-related tests.

If you want GPU-related tests to run on a specific GPU device, and not
the default one, you should use init_gpu_device.
For instance: THEANO_FLAGS=device=cpu,init_gpu_device=gpu1.

See config – Theano Configuration for more information on how to change these
configuration options.



All tests should pass (skipped tests and known failures are normal). If
some test fails on your machine, you are encouraged to tell us what went
wrong on the theano-users@googlegroups.com mailing list.




Troubleshooting: Make sure you have a BLAS library

There are many ways to configure BLAS for Theano. This is done with the Theano
flags blas.ldflags (config – Theano Configuration). The default is to use the BLAS
installation information in NumPy, accessible via
numpy.distutils.__config__.show().  You can tell theano to use a different
version of BLAS, in case you did not compile NumPy with a fast BLAS or if NumPy
was compiled with a static library of BLAS (the latter is not supported in
Theano).

The short way to configure the Theano flags blas.ldflags is by setting the
environment variable THEANO_FLAGS to blas.ldflags=XXX (in bash
export THEANO_FLAGS=blas.ldflags=XXX)

The ${HOME}/.theanorc file is the simplest way to set a relatively
permanent option like this one.  Add a [blas] section with an ldflags
entry like this:

# other stuff can go here
[blas]
ldflags = -lf77blas -latlas -lgfortran #put your flags here

# other stuff can go here





For more information on the formatting of ~/.theanorc and the
configuration options that you can put there, see config – Theano Configuration.

Here are some different way to configure BLAS:

0) Do nothing and use the default config, which is to link against the same
BLAS against which NumPy was built. This does not work in the case NumPy was
compiled with a static library (e.g. ATLAS is compiled by default only as a
static library).

1) Disable the usage of BLAS and fall back on NumPy for dot products. To do
this, set the value of blas.ldflags as the empty string (ex: export
THEANO_FLAGS=blas.ldflags=). Depending on the kind of matrix operations your
Theano code performs, this might slow some things down (vs. linking with BLAS
directly).

2) You can install the default (reference) version of BLAS if the NumPy version
(against which Theano links) does not work. If you have root or sudo access in
fedora you can do sudo yum install blas blas-devel. Under Ubuntu/Debian
sudo apt-get install libblas-dev. Then use the Theano flags
blas.ldflags=-lblas. Note that the default version of blas is not optimized.
Using an optimized version can give up to 10x speedups in the BLAS functions
that we use.

3) Install the ATLAS library. ATLAS is an open source optimized version of
BLAS. You can install a precompiled version on most OSes, but if you’re willing
to invest the time, you can compile it to have a faster version (we have seen
speed-ups of up to 3x, especially on more recent computers, against the
precompiled one). On Fedora, sudo yum install atlas-devel. Under Ubuntu,
sudo apt-get install libatlas-base-dev libatlas-base or
libatlas3gf-sse2 if your CPU supports SSE2 instructions. Then set the
Theano flags blas.ldflags to -lf77blas -latlas -lgfortran. Note that
these flags are sometimes OS-dependent.

4) Use a faster version like MKL, GOTO, ... You are on your own to install it.
See the doc of that software and set the Theano flags blas.ldflags
correctly (for example, for MKL this might be -lmkl -lguide -lpthread or
-lmkl_intel_lp64 -lmkl_intel_thread -lmkl_core -lguide -liomp5 -lmkl_mc
-lpthread).


Note

Make sure your BLAS
libraries are available as dynamically-loadable libraries.
ATLAS is often installed only as a static library.  Theano is not able to
use this static library. Your ATLAS installation might need to be modified
to provide dynamically loadable libraries.  (On Linux this
typically means a library whose name ends with .so. On Windows this will be
a .dll, and on OS-X it might be either a .dylib or a .so.)

This might be just a problem with the way Theano passes compilation
arguments to g++, but the problem is not fixed yet.




Note

If you have problems linking with MKL, Intel Line Advisor [http://software.intel.com/en-us/articles/intel-mkl-link-line-advisor]
and the MKL User Guide [http://software.intel.com/sites/products/documentation/doclib/mkl_sa/11/mkl_userguide_lnx/index.htm]
can help you find the correct flags to use.






Using the GPU

The first thing you’ll need for Theano to use your GPU is Nvidia’s
GPU-programming toolchain. You should install at least the CUDA driver and the CUDA Toolkit, as
described here [http://www.nvidia.com/object/cuda_get.html].  The CUDA
Toolkit installs a folder on your computer with subfolders bin, lib,
include, and some more too.  (Sanity check: The bin subfolder should contain an nvcc
program which is the compiler for GPU code.)  This folder is called the cuda
root directory.
You must also add the ‘lib’ subdirectory (and/or ‘lib64’ subdirectory if you have a 64-bit Linux
computer) to your $LD_LIBRARY_PATH environment variable.

You must then tell Theano where the CUDA root folder is, and there are three ways
to do it.
Any one of them is enough.


	Define a $CUDA_ROOT environment variable to equal the cuda root directory, as in CUDA_ROOT=/path/to/cuda/root, or

	add a cuda.root flag to THEANO_FLAGS, as in THEANO_FLAGS='cuda.root=/path/to/cuda/root', or

	add a [cuda] section to your .theanorc file containing the option root = /path/to/cuda/root.




Note

On Debian, you can ask the software package manager to install it
for you. We have a user report that this works for Debian Wheezy
(7.0). When you install it this way, you won’t always have the
latest version, but we were told that it gets updated
regularly. One big advantage is that it will be updated
automatically. You can try the sudo apt-get install
nvidia-cuda-toolkit command to install it.

Ubuntu instructions.



Once that is done, the only thing left is to change the device option to name the GPU device in your
computer, and set the default floating point computations to float32.
For example: THEANO_FLAGS='cuda.root=/path/to/cuda/root,device=gpu,floatX=float32'.
You can also set these options in the .theanorc file’s [global] section:


[global]
device = gpu
floatX = float32








Note that:



	If your computer has multiple GPUs and you use ‘device=gpu’, the driver
selects the one to use (usually gpu0).

	You can use the program nvida-smi to change this policy.

	You can choose one specific GPU by specifying ‘device=gpuX’, with X the
the corresponding GPU index (0, 1, 2, ...)

	By default, when device indicates preference for GPU computations,
Theano will fall back to the CPU if there is a problem with the GPU.
You can use the flag ‘force_device=True’ to instead raise an error when
Theano cannot use the GPU.






Once your setup is complete, head to Using the GPU to find how to verify
everything is working properly.






Mac OS

There are various ways to install Theano dependencies on a Mac. Here
we describe the process in detail with Canopy, Anaconda, Homebrew or
MacPorts but if you did it differently and it worked, please let us
know the details on the theano-users [http://groups.google.com/group/theano-users?pli=1] mailing-list, so that we can
add alternate instructions here.


In academia: Enthought Canopy

If you are working in academia, the easiest way to install most of the
dependencies is to install
Canopy [http://enthought.com/products/canopy/].
If you are affiliated with a university (as student or employee), you
can download the installer for free.

The Canopy installation includes in particular Python (and the
development headers), NumPy, SciPy, nose, sphinx, pip, pydot
(but not Graphviz [http://www.graphviz.org/Download_windows.php], which is necessary for it to work) and the MKL
implementation of blas.

To install the latest Theano release execute this in a terminal:

$ pip install Theano





If you want the bleeding edge version execute this command instead:

$ pip install --upgrade --no-deps git+git://github.com/Theano/Theano.git





See the section install_bleeding_edge for more
information on the bleeding edge version.

Then you must install the compiler. See Installing the compiler below.


Note

If you use version 0.6 or later of Theano, we try to automatically
link with the Canopy blas version.  Due to Mac OS peculiarities,
this requires user intervention.  We detect if the manipulation was
done or not and give an error message explaining what to do in case
it hasn’t been done.






Anaconda

An easy way to install most of the dependencies is to install
Anaconda [http://continuum.io/downloads.html]. There is a free
version available to everybody. If you install their MKL
Optimizations product (free for academic, ~30$ otherwise) Theano
will also be optimized as we will reuse the faster BLAS version
automatically.

The Anaconda installation includes in particular Python (and the
development headers), NumPy, SciPy, nose, sphinx, pip, and a
acceptable BLAS version.

After installing Anaconda, in a terminal execute this command to
install the latest Theano release:

$ pip install Theano





To install the missing Theano optional dependency (pydot):

$ conda install pydot





If you want the bleeding edge version instead execute this command:

$ pip install --upgrade --no-deps git+git://github.com/Theano/Theano.git





See the section install_bleeding_edge for more
information on the bleeding edge version.

Then you must install the compiler. See Installing the compiler below.


Note

If you use version 0.6 or later of Theano, we try to automatically
link with the python library.  Due to Mac OS peculiarities, this
requires user intervention.  We detect if the user did the
modification and if not, we tell him how to do it.






Installing the compiler

Theano officially supports only clang on OS X.  This can be installed
by getting XCode from the App Store and running it once to install the
command-line tools.

If you still want to use g++ you can do so by setting its full path in
the theano config flag gxx.  Note that any bug reports on Mac using
g++ will be ignored unless it can be reproduced with clang.




Homebrew

Install python with homebrew:

$ brew install python # or python3 if you prefer





This will install pip.  Then use pip to install numpy, scipy:

$ pip install numpy scipy





If you want to use openblas instead of Accelerate, you have to install
numpy and scipy with hombrew:

$ brew tap homebrew/python
$ brew install numpy --with-openblas
$ brew install scipy --with-openblas





Then install theano as usual:

$ pip install Theano --user





Or for the bleeding-edge version:

$ pip install --upgrade --no-deps git+git://github.com/Theano/Theano.git








MacPorts

Using MacPorts [http://www.macports.org/] to install all required
Theano dependencies is easy, but be aware that it will take a long time
(a few hours) to build and install everything.


	MacPorts requires installing XCode first (which can be found in the
Mac App Store), if you do not have it already.
If you can’t install it from the App Store, look in your MacOS X installation
DVD for an old version. Then update your Mac to update XCode.



	Download and install MacPorts [http://www.macports.org/], then
ensure its package list is up-to-date with sudo port selfupdate.



	Then, in order to install one or more of the required libraries, use
port install, e.g. as follows:


$ sudo port install py27-numpy +atlas py27-scipy +atlas py27-pip








This will install all the required Theano dependencies. gcc will
be automatically installed (since it is a SciPy dependency), but be
aware that it takes a long time to compile (hours)!
Having NumPy and SciPy linked with ATLAS (an optimized BLAS
implementation) is not mandatory, but recommended if you care about
performance.



	You might have some different versions of gcc, SciPy, NumPy, Python installed
on your system, perhaps via Xcode. It is a good idea to use either the
MacPorts version of everything or some other set of compatible versions
(e.g. provided by Xcode or Fink). The advantages of MacPorts are the
transparency with which everything can be installed and the fact that
packages are updated quite frequently. The following steps describe how to
make sure you are using the MacPorts version of these packages.



	In order to use the MacPorts version of Python, you will probably
need to explicitly select it with sudo port select python python27. The
reason this is necessary is because you may have an Apple-provided Python
(via, for example, an Xcode installation). After performing this step, you
should check that the symbolic link provided by which python points to
the MacPorts python. For instance, on MacOS X Lion with MacPorts 2.0.3,
the output of which python is /opt/local/bin/python and this symbolic
link points to /opt/local/bin/python2.7. When executing sudo
port select python python27-apple (which you should not do), the link
points to /usr/bin/python2.7.



	Similarly, make sure that you are using the MacPorts-provided gcc:
use sudo port select gcc to see which gcc installs you have on the
system. Then execute for instance sudo port select gcc mp-gcc44
to create a symlink that points to the correct (MacPorts) gcc (version 4.4
in this case).



	At this point, if you have not done so already, it may be a good idea to
close and restart your terminal, to make sure all configuration changes
are properly taken into account.



	Afterwards, please check that the scipy module that is imported in
Python is the right one (and is a recent one). For instance, import
scipy followed by print scipy.__version__ and print scipy.__path__
should result in a version number of at least 0.7.0 and a path that starts
with /opt/local (the path where MacPorts installs its packages). If this
is not the case, then you might have some old installation of scipy in your
PYTHONPATH so you should edit PYTHONPATH accordingly.



	Please follow the same procedure with numpy.



	This is covered in the MacPorts installation process, but make sure that
your PATH environment variable contains /opt/local/bin and
/opt/local/sbin before any other paths (to ensure that the Python and
gcc binaries that you installed with MacPorts are visible first).



	MacPorts does not create automatically nosetests and pip symlinks
pointing to the MacPorts version, so you can add them yourself with


$ sudo ln -s /opt/local/bin/nosetests-2.7 /opt/local/bin/nosetests
$ sudo ln -s /opt/local/bin/pip-2.7 /opt/local/bin/pip










	At this point you are ready to install Theano with


$ sudo pip install Theano








And if you are in no hurry, you can run its test-suite with


$ python -c "import theano; theano.test()"















Using the GPU

You should be able to follow the Linux instructions to
setup CUDA, but be aware of the following caveats:



	If you want to compile the CUDA SDK code, you may need to temporarily
revert back to Apple’s gcc (sudo port select gcc) as their Makefiles
are not compatible with MacPort’s gcc.

	If CUDA seems unable to find a CUDA-capable GPU, you may need to manually
toggle your GPU on, which can be done with
gfxCardStatus [http://codykrieger.com/gfxCardStatus].






Once your setup is complete, head to Using the GPU to find how to verify
everything is working properly.




Troubleshooting MacOS issues

Although the above steps should be enough, running Theano on a Mac may
sometimes cause unexpected crashes, typically due to multiple versions of
Python or other system libraries. If you encounter such problems, you may
try the following.


	You can ensure MacPorts shared libraries are given priority at run-time
with export LD_LIBRARY_PATH=/opt/local/lib:$LD_LIBRARY_PATH. In order
to do the same at compile time, you can add to your ~/.theanorc:


[gcc]
cxxflags = -L/opt/local/lib










	An obscure Bus error can sometimes be caused when linking
Theano-generated object files against the framework library in Leopard.
For this reason, we have disabled linking with -framework Python, since on
most configurations this solves the Bus error problem. If this default
configuration causes problems with your Python/Theano installation and you think
that linking with -framework Python might help, then either set
the THEANO_FLAGS environment variable with
THEANO_FLAGS=cmodule.mac_framework_link or edit your ~/.theanorc to
contain


[cmodule]
mac_framework_link=True










	More generally, to investigate libraries issues, you can use the otool -L
command on .so files found under your ~/.theano directory. This will
list shared libraries dependencies, and may help identify incompatibilities.





Please inform us if you have trouble installing and running Theano on your Mac.
We would be especially interested in dependencies that we missed listing,
alternate installation steps, GPU instructions, as well as tests that fail on
your platform (use the theano-users@googlegroups.com mailing list, but
note that you must first register to it, by going to theano-users [http://groups.google.com/group/theano-users?pli=1]).






Windows

Installation of Theano on Windows provides step-by-step instructions on how to install Theano on 32- or 64-bit Windows systems, using freely available
tools and compilers.


Editing code in Visual Studio

You will find a Visual Studio solution file (Theano.sln) in the root of
the Theano repository. Note that this project file may not be kept up-to-date
and is not officially supported by the core Theano developers: it is provided
for convenience only.
Also, be aware that it will not make Theano use Visual Studio to compile C
files: it is only meant to provide an easy way to edit Theano code within
the Visual Studio editor.




Windows Installation References


	http://stackoverflow.com/questions/9047072/windows-python-version-and-vc-redistributable-version

	http://stackoverflow.com/questions/1865069/how-to-compile-a-64-bit-application-using-visual-c-2010-express

	http://blog.victorjabur.com/2011/06/05/compiling-python-2-7-modules-on-windows-32-and-64-using-msvc-2008-express/

	http://stackoverflow.com/questions/126279/c99-stdint-h-header-and-ms-visual-studio

	http://stackoverflow.com/questions/11182765/how-can-i-build-my-c-extensions-with-mingw-w64-in-python

	https://mail.python.org/pipermail/python-announce-list/2014-September/010457.html








Generating the documentation

You can read the latest HTML documentation here [http://deeplearning.net/software/theano].
You can download the latest PDF documentation here [http://deeplearning.net/software/theano/theano.pdf].

We recommend you look at the documentation on the website, since it
will be more current than the documentation included with the package.

If you really wish to build the documentation yourself, you will need
epydoc and sphinx, as described above. Issue the following command:

python ./doc/scripts/docgen.py





Documentation is built into html/.
The PDF of the documentation is html/theano.pdf.
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Tutorial

Let us start an interactive session (e.g. with python or ipython) and import Theano.

>>> from theano import *





Several of the symbols you will need to use are in the tensor subpackage
of Theano. Let us import that subpackage under a handy name like
T (the tutorials will frequently use this convention).

>>> import theano.tensor as T





If that succeeded you are ready for the tutorial, otherwise check your
installation (see Installing Theano).

Throughout the tutorial, bear in mind that there is a Glossary as well
as index and modules links in the upper-right corner of each page to help
you out.



	Python tutorial

	NumPy refresher
	Matrix conventions for machine learning

	Broadcasting





	Baby Steps - Algebra
	Adding two Scalars

	Adding two Matrices

	Exercise





	More Examples
	Logistic Function

	Computing More than one Thing at the Same Time

	Setting a Default Value for an Argument

	Using Shared Variables

	Using Random Numbers
	Brief Example

	Seeding Streams

	Sharing Streams Between Functions

	Copying Random State Between Theano Graphs

	Other Random Distributions

	Other Implementations





	A Real Example: Logistic Regression





	Graph Structures
	Theano Graphs

	Automatic Differentiation

	Optimizations





	Printing/Drawing Theano graphs
	Pretty Printing

	Debug Printing

	Picture Printing





	Derivatives in Theano
	Computing Gradients

	Computing the Jacobian

	Computing the Hessian

	Jacobian times a Vector
	R-operator

	L-operator





	Hessian times a Vector

	Final Pointers





	Configuration Settings and Compiling Modes
	Configuration

	Exercise

	Mode

	Linkers

	Using DebugMode

	ProfileMode
	Creating a ProfileMode Instance

	Compiling your Graph with ProfileMode

	Retrieving Timing Information









	Loading and Saving
	The Basics of Pickling

	Short-Term Serialization

	Long-Term Serialization





	Conditions
	IfElse vs Switch





	Loop
	Scan
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	Sparse
	Compressed Sparse Format
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	Handling Sparse in Theano
	To and Fro

	Properties and Construction
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	Using the GPU
	CUDA backend
	Testing Theano with GPU

	Returning a Handle to Device-Allocated Data

	What Can Be Accelerated on the GPU

	Tips for Improving Performance on GPU

	GPU Async capabilities

	Changing the Value of Shared Variables
	Exercise









	GpuArray Backend
	Testing Theano with GPU

	Returning a Handle to Device-Allocated Data

	What Can be Accelerated on the GPU

	GPU Async Capabilities





	Software for Directly Programming a GPU

	Learning to Program with PyCUDA
	Exercise
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	PyCUDA/CUDAMat/Gnumpy compatibility
	PyCUDA
	Transfer

	Compiling with PyCUDA

	Theano Op using a PyCUDA function





	CUDAMat

	Gnumpy





	Understanding Memory Aliasing for Speed and Correctness
	The Memory Model: Two Spaces

	Borrowing when Creating Shared Variables

	Borrowing when Accessing Value of Shared Variables
	Retrieving

	Assigning





	Borrowing when Constructing Function Objects





	How Shape Information is Handled by Theano
	Shape Inference Problem

	Specifing Exact Shape

	Future Plans





	Debugging Theano: FAQ and Troubleshooting
	Isolating the Problem/Testing Theano Compiler

	Interpreting Error Messages

	Using Test Values

	“How do I Print an Intermediate Value in a Function?”

	“How do I Print a Graph?” (before or after compilation)

	“The Function I Compiled is Too Slow, what’s up?”

	“How do I Step through a Compiled Function?”

	How to Use pdb

	Dumping a Function to help debug





	Profiling Theano function

	Extending Theano
	Theano Graphs

	Op Structure

	Op Example

	How To Test it
	Basic Tests

	Testing the infer_shape

	Testing the gradient

	Testing the Rop

	Testing GPU Ops





	Running Your Tests
	theano-nose

	nosetests

	In-file





	Exercise

	as_op
	as_op Example
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	Random numbers in tests

	Documentation

	Final Note





	Extending Theano with a C Op
	Python C-API
	Reference counting





	NumPy C-API
	NumPy data types

	NumPy ndarrays

	Accessing NumPy ndarrays’ data and properties

	Creating NumPy ndarrays





	Methods the C Op needs to define

	Simple C Op example

	More complex C Op example

	Alternate way of defining C Ops
	Main function

	Macros

	Support code





	Final Note





	Python Memory Management
	Basic Objects

	Internal Memory Management

	Pickle





	Multi cores support in Theano
	BLAS operation

	Parallel element wise ops with OpenMP
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Python tutorial

In this documentation, we suppose that the reader knows Python. Here is a small list of Python
tutorials/exercises if you need to learn it or only need a refresher:



	Python Challenge [http://www.pythonchallenge.com/]

	Dive into Python [http://diveintopython.net/]

	Google Python Class [http://code.google.com/edu/languages/google-python-class/index.html]

	Enthought Python course [https://training.enthought.com/?utm_source=academic&utm_medium=email&utm_campaign=EToD-Launch#/courses] (free for academics)






We have a tutorial on how Python manages its memory.
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NumPy refresher


	Here are some quick guides to NumPy:

	
	Numpy quick guide for Matlab users [http://www.scipy.org/NumPy_for_Matlab_Users]

	Numpy User Guide [http://docs.scipy.org/doc/numpy/user/index.html]

	More detailed Numpy tutorial [http://www.scipy.org/Tentative_NumPy_Tutorial]

	100 NumPy exercises [https://github.com/rougier/numpy-100]








Matrix conventions for machine learning

Rows are horizontal and columns are vertical.
Every row is an example. Therefore, inputs[10,5] is a matrix of 10 examples
where each example has dimension 5. If this would be the input of a
neural network then the weights from the input to the first hidden
layer would represent a matrix of size (5, #hid).

Consider this array:

>>> numpy.asarray([[1., 2], [3, 4], [5, 6]])
array([[ 1.,  2.],
       [ 3.,  4.],
       [ 5.,  6.]])
>>> numpy.asarray([[1., 2], [3, 4], [5, 6]]).shape
(3, 2)





This is a 3x2 matrix, i.e. there are 3 rows and 2 columns.

To access the entry in the 3rd row (row #2) and the 1st column (column #0):

>>> numpy.asarray([[1., 2], [3, 4], [5, 6]])[2, 0]
5.0





To remember this, keep in mind that we read left-to-right, top-to-bottom,
so each thing that is contiguous is a row.  That is, there are 3 rows
and 2 columns.




Broadcasting

Numpy does broadcasting of arrays of different shapes during
arithmetic operations. What this means in general is that the smaller
array (or scalar) is broadcasted across the larger array so that they have
compatible shapes. The example below shows an instance of
broadcastaing:

>>> a = numpy.asarray([1.0, 2.0, 3.0])
>>> b = 2.0
>>> a * b
array([2., 4., 6.])





The smaller array b (actually a scalar here, which works like a 0-d array) in this case is broadcasted to the same size
as a during the multiplication. This trick is often useful in
simplifying how expression are written. More detail about broadcasting
can be found in the numpy user guide [http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html].
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Baby Steps - Algebra


Adding two Scalars

To get us started with Theano and get a feel of what we’re working with,
let’s make a simple function: add two numbers together. Here is how you do
it:

>>> import theano.tensor as T
>>> from theano import function
>>> x = T.dscalar('x')
>>> y = T.dscalar('y')
>>> z = x + y
>>> f = function([x, y], z)





And now that we’ve created our function we can use it:

>>> f(2, 3)
array(5.0)
>>> f(16.3, 12.1)
array(28.4)





Let’s break this down into several steps. The first step is to define
two symbols (Variables) representing the quantities that you want
to add. Note that from now on, we will use the term
Variable to mean “symbol” (in other words,
x, y, z are all Variable objects). The output of the function
f is a numpy.ndarray with zero dimensions.

If you are following along and typing into an interpreter, you may have
noticed that there was a slight delay in executing the function
instruction. Behind the scene, f was being compiled into C code.

Step 1

>>> x = T.dscalar('x')
>>> y = T.dscalar('y')





In Theano, all symbols must be typed. In particular, T.dscalar
is the type we assign to “0-dimensional arrays (scalar) of doubles
(d)”. It is a Theano Type.

dscalar is not a class. Therefore, neither x nor y
are actually instances of dscalar. They are instances of
TensorVariable. x and y
are, however, assigned the theano Type dscalar in their type
field, as you can see here:

>>> type(x)
<class 'theano.tensor.basic.TensorVariable'>
>>> x.type
TensorType(float64, scalar)
>>> T.dscalar
TensorType(float64, scalar)
>>> x.type is T.dscalar
True





By calling T.dscalar with a string argument, you create a
Variable representing a floating-point scalar quantity with the
given name. If you provide no argument, the symbol will be unnamed. Names
are not required, but they can help debugging.

More will be said in a moment regarding Theano’s inner structure. You
could also learn more by looking into Graph Structures.

Step 2

The second step is to combine x and y into their sum z:

>>> z = x + y





z is yet another Variable which represents the addition of
x and y. You can use the pp
function to pretty-print out the computation associated to z.

>>> from theano import pp
>>> print pp(z)
(x + y)





Step 3

The last step is to create a function taking x and y as inputs
and giving z as output:

>>> f = function([x, y], z)





The first argument to function is a list of Variables
that will be provided as inputs to the function. The second argument
is a single Variable or a list of Variables. For either case, the second
argument is what we want to see as output when we apply the function. f may
then be used like a normal Python function.


Note

As a shortcut, you can skip step 3, and just use a variable’s
eval() method. The eval() method is not as flexible
as function() but it can do everything we’ve covered in
the tutorial so far. It has the added benefit of not requiring
you to import function() . Here is how eval() works:

>>> import theano.tensor as T
>>> x = T.dscalar('x')
>>> y = T.dscalar('y')
>>> z = x + y
>>> z.eval({x : 16.3, y : 12.1})
array(28.4)





We passed eval() a dictionary mapping symbolic theano
variables to the values to substitute for them, and it returned
the numerical value of the expression.

eval() will be slow the first time you call it on a variable –
it needs to call function() to compile the expression behind
the scenes. Subsequent calls to eval() on that same variable
will be fast, because the variable caches the compiled function.






Adding two Matrices

You might already have guessed how to do this. Indeed, the only change
from the previous example is that you need to instantiate x and
y using the matrix Types:

>>> x = T.dmatrix('x')
>>> y = T.dmatrix('y')
>>> z = x + y
>>> f = function([x, y], z)





dmatrix is the Type for matrices of doubles. Then we can use
our new function on 2D arrays:

>>> f([[1, 2], [3, 4]], [[10, 20], [30, 40]])
array([[ 11.,  22.],
       [ 33.,  44.]])





The variable is a NumPy array. We can also use NumPy arrays directly as
inputs:

>>> import numpy
>>> f(numpy.array([[1, 2], [3, 4]]), numpy.array([[10, 20], [30, 40]]))
array([[ 11.,  22.],
       [ 33.,  44.]])





It is possible to add scalars to matrices, vectors to matrices,
scalars to vectors, etc. The behavior of these operations is defined
by broadcasting.

The following types are available:


	byte: bscalar, bvector, bmatrix, brow, bcol, btensor3, btensor4

	16-bit integers: wscalar, wvector, wmatrix, wrow, wcol, wtensor3, wtensor4

	32-bit integers: iscalar, ivector, imatrix, irow, icol, itensor3, itensor4

	64-bit integers: lscalar, lvector, lmatrix, lrow, lcol, ltensor3, ltensor4

	float: fscalar, fvector, fmatrix, frow, fcol, ftensor3, ftensor4

	double: dscalar, dvector, dmatrix, drow, dcol, dtensor3, dtensor4

	complex: cscalar, cvector, cmatrix, crow, ccol, ctensor3, ctensor4



The previous list is not exhaustive and a guide to all types compatible
with NumPy arrays may be found here: tensor creation.


Note

You, the user—not the system architecture—have to choose whether your
program will use 32- or 64-bit integers (i prefix vs. the l prefix)
and floats (f prefix vs. the d prefix).






Exercise

import theano
a = theano.tensor.vector() # declare variable
out = a + a ** 10               # build symbolic expression
f = theano.function([a], out)   # compile function
print f([0, 1, 2])  # prints `array([0, 2, 1026])`





Modify and execute this code to compute this expression: a ** 2 + b ** 2 + 2 * a * b.

Solution
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More Examples

At this point it would be wise to begin familiarizing yourself more
systematically with Theano’s fundamental objects and operations by
browsing this section of the library: Basic Tensor Functionality.

As the tutorial unfolds, you should also gradually acquaint yourself
with the other relevant areas of the library and with the relevant
subjects of the documentation entrance page.


Logistic Function

Here’s another straightforward example, though a bit more elaborate
than adding two numbers together. Let’s say that you want to compute
the logistic curve, which is given by:


[image: s(x) = \frac{1}{1 + e^{-x}}]



[image: ../_images/logistic.png]
A plot of the logistic function, with x on the x-axis and s(x) on the
y-axis.



You want to compute the function elementwise on matrices of doubles, which means that
you want to apply this function to each individual element of the
matrix.

Well, what you do is this:

>>> x = T.dmatrix('x')
>>> s = 1 / (1 + T.exp(-x))
>>> logistic = function([x], s)
>>> logistic([[0, 1], [-1, -2]])
array([[ 0.5       ,  0.73105858],
       [ 0.26894142,  0.11920292]])





The reason logistic is performed elementwise is because all of its
operations—division, addition, exponentiation, and division—are
themselves elementwise operations.

It is also the case that:


[image: s(x) = \frac{1}{1 + e^{-x}} = \frac{1 + \tanh(x/2)}{2}]


We can verify that this alternate form produces the same values:

>>> s2 = (1 + T.tanh(x / 2)) / 2
>>> logistic2 = function([x], s2)
>>> logistic2([[0, 1], [-1, -2]])
array([[ 0.5       ,  0.73105858],
       [ 0.26894142,  0.11920292]])








Computing More than one Thing at the Same Time

Theano supports functions with multiple outputs. For example, we can
compute the elementwise difference, absolute difference, and
squared difference between two matrices a and b at the same time:

>>> a, b = T.dmatrices('a', 'b')
>>> diff = a - b
>>> abs_diff = abs(diff)
>>> diff_squared = diff**2
>>> f = function([a, b], [diff, abs_diff, diff_squared])






Note

dmatrices produces as many outputs as names that you provide.  It is a
shortcut for allocating symbolic variables that we will often use in the
tutorials.



When we use the function f, it returns the three variables (the printing
was reformatted for readability):

>>> f([[1, 1], [1, 1]], [[0, 1], [2, 3]])
[array([[ 1.,  0.],
        [-1., -2.]]),
 array([[ 1.,  0.],
        [ 1.,  2.]]),
 array([[ 1.,  0.],
        [ 1.,  4.]])]








Setting a Default Value for an Argument

Let’s say you want to define a function that adds two numbers, except
that if you only provide one number, the other input is assumed to be
one. You can do it like this:

>>> from theano import Param
>>> x, y = T.dscalars('x', 'y')
>>> z = x + y
>>> f = function([x, Param(y, default=1)], z)
>>> f(33)
array(34.0)
>>> f(33, 2)
array(35.0)





This makes use of the Param class which allows
you to specify properties of your function’s parameters with greater detail. Here we
give a default value of 1 for y by creating a Param instance with
its default field set to 1.

Inputs with default values must follow inputs without default
values (like Python’s functions).  There can be multiple inputs with default values. These parameters can
be set positionally or by name, as in standard Python:

>>> x, y, w = T.dscalars('x', 'y', 'w')
>>> z = (x + y) * w
>>> f = function([x, Param(y, default=1), Param(w, default=2, name='w_by_name')], z)
>>> f(33)
array(68.0)
>>> f(33, 2)
array(70.0)
>>> f(33, 0, 1)
array(33.0)
>>> f(33, w_by_name=1)
array(34.0)
>>> f(33, w_by_name=1, y=0)
array(33.0)






Note

Param does not know the name of the local variables y and w
that are passed as arguments.  The symbolic variable objects have name
attributes (set by dscalars in the example above) and these are the
names of the keyword parameters in the functions that we build.  This is
the mechanism at work in Param(y, default=1).  In the case of Param(w,
default=2, name='w_by_name'). We override the symbolic variable’s name
attribute with a name to be used for this function.



You may like to see Function in the library for more detail.




Using Shared Variables

It is also possible to make a function with an internal state. For
example, let’s say we want to make an accumulator: at the beginning,
the state is initialized to zero. Then, on each function call, the state
is incremented by the function’s argument.

First let’s define the accumulator function. It adds its argument to the
internal state, and returns the old state value.

>>> from theano import shared
>>> state = shared(0)
>>> inc = T.iscalar('inc')
>>> accumulator = function([inc], state, updates=[(state, state+inc)])





This code introduces a few new concepts.  The shared function constructs
so-called shared variables.
These are hybrid symbolic and non-symbolic variables whose value may be shared
between multiple functions.  Shared variables can be used in symbolic expressions just like
the objects returned by dmatrices(...) but they also have an internal
value that defines the value taken by this symbolic variable in all the
functions that use it.  It is called a shared variable because its value is
shared between many functions.  The value can be accessed and modified by the
.get_value() and .set_value() methods. We will come back to this soon.

The other new thing in this code is the updates parameter of function.
updates must be supplied with a list of pairs of the form (shared-variable, new expression).
It can also be a dictionary whose keys are shared-variables and values are
the new expressions.  Either way, it means “whenever this function runs, it
will replace the .value of each shared variable with the result of the
corresponding expression”.  Above, our accumulator replaces the state‘s value with the sum
of the state and the increment amount.

Let’s try it out!

>>> state.get_value()
array(0)
>>> accumulator(1)
array(0)
>>> state.get_value()
array(1)
>>> accumulator(300)
array(1)
>>> state.get_value()
array(301)





It is possible to reset the state. Just use the .set_value() method:

>>> state.set_value(-1)
>>> accumulator(3)
array(-1)
>>> state.get_value()
array(2)





As we mentioned above, you can define more than one function to use the same
shared variable.  These functions can all update the value.

>>> decrementor = function([inc], state, updates=[(state, state-inc)])
>>> decrementor(2)
array(2)
>>> state.get_value()
array(0)





You might be wondering why the updates mechanism exists.  You can always
achieve a similar result by returning the new expressions, and working with
them in NumPy as usual.  The updates mechanism can be a syntactic convenience,
but it is mainly there for efficiency.  Updates to shared variables can
sometimes be done more quickly using in-place algorithms (e.g. low-rank matrix
updates).  Also, Theano has more control over where and how shared variables are
allocated, which is one of the important elements of getting good performance
on the GPU.

It may happen that you expressed some formula using a shared variable, but
you do not want to use its value. In this case, you can use the
givens parameter of function which replaces a particular node in a graph
for the purpose of one particular function.

>>> fn_of_state = state * 2 + inc
>>> # The type of foo must match the shared variable we are replacing
>>> # with the ``givens``
>>> foo = T.scalar(dtype=state.dtype)
>>> skip_shared = function([inc, foo], fn_of_state,
                           givens=[(state, foo)])
>>> skip_shared(1, 3)  # we're using 3 for the state, not state.value
array(7)
>>> state.get_value()  # old state still there, but we didn't use it
array(0)





The givens parameter can be used to replace any symbolic variable, not just a
shared variable. You can replace constants, and expressions, in general.  Be
careful though, not to allow the expressions introduced by a givens
substitution to be co-dependent, the order of substitution is not defined, so
the substitutions have to work in any order.

In practice, a good way of thinking about the givens is as a mechanism
that allows you to replace any part of your formula with a different
expression that evaluates to a tensor of same shape and dtype.


Note

Theano shared variable broadcast pattern default to False for each
dimensions. Shared variable size can change over time, so we can’t
use the shape to find the broadcastable pattern. If you want a
different pattern, just pass it as a parameter
theano.shared(..., broadcastable=(True, False))






Using Random Numbers

Because in Theano you first express everything symbolically and
afterwards compile this expression to get functions,
using pseudo-random numbers is not as straightforward as it is in
NumPy, though also not too complicated.

The way to think about putting randomness into Theano’s computations is
to put random variables in your graph. Theano will allocate a NumPy
RandomStream object (a random number generator) for each such
variable, and draw from it as necessary. We will call this sort of
sequence of random numbers a random stream. Random streams are at
their core shared variables, so the observations on shared variables
hold here as well. Theanos’s random objects are defined and implemented in
RandomStreams and, at a lower level,
in RandomStreamsBase.


Brief Example

Here’s a brief example.  The setup code is:

from theano.tensor.shared_randomstreams import RandomStreams
from theano import function
srng = RandomStreams(seed=234)
rv_u = srng.uniform((2,2))
rv_n = srng.normal((2,2))
f = function([], rv_u)
g = function([], rv_n, no_default_updates=True)    #Not updating rv_n.rng
nearly_zeros = function([], rv_u + rv_u - 2 * rv_u)





Here, ‘rv_u’ represents a random stream of 2x2 matrices of draws from a uniform
distribution.  Likewise,  ‘rv_n’ represents a random stream of 2x2 matrices of
draws from a normal distribution.  The distributions that are implemented are
defined in RandomStreams and, at a lower level, in raw_random.





Now let’s use these objects.  If we call f(), we get random uniform numbers.
The internal state of the random number generator is automatically updated,
so we get different random numbers every time.

>>> f_val0 = f()
>>> f_val1 = f()  #different numbers from f_val0





When we add the extra argument no_default_updates=True to
function (as in g), then the random number generator state is
not affected by calling the returned function.  So, for example, calling
g multiple times will return the same numbers.

>>> g_val0 = g()  # different numbers from f_val0 and f_val1
>>> g_val1 = g()  # same numbers as g_val0!





An important remark is that a random variable is drawn at most once during any
single function execution.  So the nearly_zeros function is guaranteed to
return approximately 0 (except for rounding error) even though the rv_u
random variable appears three times in the output expression.

>>> nearly_zeros = function([], rv_u + rv_u - 2 * rv_u)








Seeding Streams

Random variables can be seeded individually or collectively.

You can seed just one random variable by seeding or assigning to the
.rng attribute, using .rng.set_value().

>>> rng_val = rv_u.rng.get_value(borrow=True)   # Get the rng for rv_u
>>> rng_val.seed(89234)                         # seeds the generator
>>> rv_u.rng.set_value(rng_val, borrow=True)    # Assign back seeded rng





You can also seed all of the random variables allocated by a RandomStreams
object by that object’s seed method.  This seed will be used to seed a
temporary random number generator, that will in turn generate seeds for each
of the random variables.

>>> srng.seed(902340)  # seeds rv_u and rv_n with different seeds each








Sharing Streams Between Functions

As usual for shared variables, the random number generators used for random
variables are common between functions.  So our nearly_zeros function will
update the state of the generators used in function f above.

For example:

>>> state_after_v0 = rv_u.rng.get_value().get_state()
>>> nearly_zeros()       # this affects rv_u's generator
>>> v1 = f()
>>> rng = rv_u.rng.get_value(borrow=True)
>>> rng.set_state(state_after_v0)
>>> rv_u.rng.set_value(rng, borrow=True)
>>> v2 = f()             # v2 != v1
>>> v3 = f()             # v3 == v1








Copying Random State Between Theano Graphs

In some use cases, a user might want to transfer the “state” of all random
number generators associated with a given theano graph (e.g. g1, with compiled
function f1 below) to a second graph (e.g. g2, with function f2). This might
arise for example if you are trying to initialize the state of a model, from
the parameters of a pickled version of a previous model. For
theano.tensor.shared_randomstreams.RandomStreams and
theano.sandbox.rng_mrg.MRG_RandomStreams
this can be achieved by copying elements of the state_updates parameter.

Each time a random variable is drawn from a RandomStreams object, a tuple is
added to the state_updates list. The first element is a shared variable,
which represents the state of the random number generator associated with this
particular variable, while the second represents the theano graph
corresponding to the random number generation process (i.e. RandomFunction{uniform}.0).

An example of how “random states” can be transferred from one theano function
to another is shown below.

import theano
import numpy
import theano.tensor as T
from theano.sandbox.rng_mrg import MRG_RandomStreams
from theano.tensor.shared_randomstreams import RandomStreams

class Graph():
    def __init__(self, seed=123):
        self.rng = RandomStreams(seed)
        self.y = self.rng.uniform(size=(1,))

g1 = Graph(seed=123)
f1 = theano.function([], g1.y)

g2 = Graph(seed=987)
f2 = theano.function([], g2.y)

print 'By default, the two functions are out of sync.'
print 'f1() returns ', f1()
print 'f2() returns ', f2()

def copy_random_state(g1, g2):
    if isinstance(g1.rng, MRG_RandomStreams):
        g2.rng.rstate = g1.rng.rstate
    for (su1, su2) in zip(g1.rng.state_updates, g2.rng.state_updates):
        su2[0].set_value(su1[0].get_value())

print 'We now copy the state of the theano random number generators.'
copy_random_state(g1, g2)
print 'f1() returns ', f1()
print 'f2() returns ', f2()





This gives the following output:

# By default, the two functions are out of sync.
f1() returns  [ 0.72803009]
f2() returns  [ 0.55056769]
# We now copy the state of the theano random number generators.
f1() returns  [ 0.59044123]
f2() returns  [ 0.59044123]








Other Random Distributions

There are other distributions implemented.




Other Implementations

There is 2 other implementations based on CURAND and MRG31k3p






A Real Example: Logistic Regression

The preceding elements are featured in this more realistic example.
It will be used repeatedly.

import numpy
import theano
import theano.tensor as T
rng = numpy.random

N = 400
feats = 784
D = (rng.randn(N, feats), rng.randint(size=N, low=0, high=2))
training_steps = 10000

# Declare Theano symbolic variables
x = T.matrix("x")
y = T.vector("y")
w = theano.shared(rng.randn(feats), name="w")
b = theano.shared(0., name="b")
print "Initial model:"
print w.get_value(), b.get_value()

# Construct Theano expression graph
p_1 = 1 / (1 + T.exp(-T.dot(x, w) - b))   # Probability that target = 1
prediction = p_1 > 0.5                    # The prediction thresholded
xent = -y * T.log(p_1) - (1-y) * T.log(1-p_1) # Cross-entropy loss function
cost = xent.mean() + 0.01 * (w ** 2).sum()# The cost to minimize
gw, gb = T.grad(cost, [w, b])             # Compute the gradient of the cost
                                          # (we shall return to this in a
                                          # following section of this tutorial)

# Compile
train = theano.function(
          inputs=[x,y],
          outputs=[prediction, xent],
          updates=((w, w - 0.1 * gw), (b, b - 0.1 * gb)))
predict = theano.function(inputs=[x], outputs=prediction)

# Train
for i in range(training_steps):
    pred, err = train(D[0], D[1])

print "Final model:"
print w.get_value(), b.get_value()
print "target values for D:", D[1]
print "prediction on D:", predict(D[0])
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Graph Structures


Theano Graphs

Debugging or profiling code written in Theano is not that simple if you
do not know what goes on under the hood. This chapter is meant to
introduce you to a required minimum of the inner workings of Theano.
For more detail see Extending Theano.

The first step in writing Theano code is to write down all mathematical
relations using symbolic placeholders (variables). When writing down
these expressions you use operations like +, -, **,
sum(), tanh(). All these are represented internally as ops.
An op represents a certain computation on some type of inputs
producing some type of output. You can see it as a function definition
in most programming languages.

Theano builds internally a graph structure composed of interconnected
variable nodes, op nodes and apply nodes. An
apply node represents the application of an op to some
variables. It is important to draw the difference between the
definition of a computation represented by an op and its application
to some actual data which is represented by the apply node. For more
detail about these building blocks refer to Variable, Op,
Apply. Here is an example of a graph:

Code

x = T.dmatrix('x')
y = T.dmatrix('y')
z = x + y





Diagram


[image: ../_images/apply1.png]
Interaction between instances of Apply (blue), Variable (red), Op (green),
and Type (purple).



Arrows in this figure represent references to the
Python objects pointed at. The blue
box is an Apply node. Red boxes are Variable nodes. Green
circles are Ops. Purple boxes are Types.

The graph can be traversed starting from outputs (the result of some
computation) down to its inputs using the owner field.
Take for example the following code:

x = T.dmatrix('x')
y = x * 2.





If you enter type(y.owner) you get <class 'theano.gof.graph.Apply'>,
which is the apply node that connects the op and the inputs to get this
output. You can now print the name of the op that is applied to get
y:

>>> y.owner.op.name
'Elemwise{mul,no_inplace}'





Hence, an elementwise multiplication is used to compute y. This
multiplication is done between the inputs:

>>> len(y.owner.inputs)
2
>>> y.owner.inputs[0]
x
>>> y.owner.inputs[1]
InplaceDimShuffle{x,x}.0





Note that the second input is not 2 as we would have expected. This is
because 2 was first broadcasted to a matrix of
same shape as x. This is done by using the op DimShuffle :

>>> type(y.owner.inputs[1])
<class 'theano.tensor.basic.TensorVariable'>
>>> type(y.owner.inputs[1].owner)
<class 'theano.gof.graph.Apply'>
>>> y.owner.inputs[1].owner.op
<class 'theano.tensor.elemwise.DimShuffle object at 0x14675f0'>
>>> y.owner.inputs[1].owner.inputs
[2.0]





Starting from this graph structure it is easier to understand how
automatic differentiation proceeds and how the symbolic relations
can be optimized for performance or stability.




Automatic Differentiation

Having the graph structure, computing automatic differentiation is
simple. The only thing tensor.grad() has to do is to traverse the
graph from the outputs back towards the inputs through all apply
nodes (apply nodes are those that define which computations the
graph does). For each such apply node, its op defines
how to compute the gradient of the node’s outputs with respect to its
inputs. Note that if an op does not provide this information,
it is assumed that the gradient is not defined.
Using the
chain rule [http://en.wikipedia.org/wiki/Chain_rule]
these gradients can be composed in order to obtain the expression of the
gradient of the graph’s output with respect to the graph’s inputs .

A following section of this tutorial will examine the topic of differentiation
in greater detail.




Optimizations

When compiling a Theano function, what you give to the
theano.function is actually a graph
(starting from the output variables you can traverse the graph up to
the input variables). While this graph structure shows how to compute
the output from the input, it also offers the possibility to improve the
way this computation is carried out. The way optimizations work in
Theano is by identifying and replacing certain patterns in the graph
with other specialized patterns that produce the same results but are either
faster or more stable. Optimizations can also detect
identical subgraphs and ensure that the same values are not computed
twice or reformulate parts of the graph to a GPU specific version.

For example, one (simple) optimization that Theano uses is to replace
the pattern [image: \frac{xy}{y}] by x.

Further information regarding the optimization
process and the specific optimizations that are applicable
is respectively available in the library and on the entrance page of the documentation.

Example

Symbolic programming involves a change of paradigm: it will become clearer
as we apply it. Consider the following example of optimization:

>>> import theano
>>> a = theano.tensor.vector("a")      # declare symbolic variable
>>> b = a + a ** 10                    # build symbolic expression
>>> f = theano.function([a], b)        # compile function
>>> print f([0, 1, 2])                 # prints `array([0,2,1026])`











	Unoptimized graph
	Optimized graph




	[image: ../_images/f_unoptimized2.png]

	[image: ../_images/f_optimized2.png]
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Printing/Drawing Theano graphs

Theano provides two functions (theano.pp() and
theano.printing.debugprint()) to print a graph to the terminal before or after
compilation.  These two functions print expression graphs in different ways:
pp() is more compact and math-like, debugprint() is more verbose.
Theano also provides pydotprint() that creates a png image of the function.
You can read about them in printing – Graph Printing and Symbolic Print Statement.


Note

When printing Theano functions, they can sometimes be hard to
read.  To help with this, you can disable some Theano optimizations
by using the Theano flag:
optimizer_excluding=fusion:inplace. Do not use this during
real job execution, as this will make the graph slower and use more
memory.



Consider again the logistic regression but notice the additional printing instuctions.
The following output depicts the pre- and post- compilation graphs.

import theano
import theano.tensor as T

import numpy

import os

rng = numpy.random

N = 400
feats = 784
D = (rng.randn(N, feats).astype(theano.config.floatX),
rng.randint(size=N,low=0, high=2).astype(theano.config.floatX))
training_steps = 10000

# Declare Theano symbolic variables
x = T.matrix("x")
y = T.vector("y")
w = theano.shared(rng.randn(feats).astype(theano.config.floatX), name="w")
b = theano.shared(numpy.asarray(0., dtype=theano.config.floatX), name="b")
x.tag.test_value = D[0]
y.tag.test_value = D[1]
#print "Initial model:"
#print w.get_value(), b.get_value()


# Construct Theano expression graph
p_1 = 1 / (1 + T.exp(-T.dot(x, w) - b)) # Probability of having a one
prediction = p_1 > 0.5 # The prediction that is done: 0 or 1
xent = -y * T.log(p_1) - (1 - y) * T.log(1 - p_1) # Cross-entropy
cost = xent.mean() + 0.01 * (w ** 2).sum() # The cost to optimize
gw,gb = T.grad(cost, [w, b])

# Compile expressions to functions
train = theano.function(
            inputs=[x, y],
            outputs=[prediction, xent],
            updates=[(w, w - 0.01 * gw), (b, b - 0.01 * gb)],
            name="train")
predict = theano.function(inputs=[x], outputs=prediction,
            name="predict")

if any([x.op.__class__.__name__ in ['Gemv', 'CGemv'] for x in
        train.maker.fgraph.toposort()]):
    print 'Used the cpu'
elif any([x.op.__class__.__name__ == 'GpuGemm' for x in
         train.maker.fgraph.toposort()]):
    print 'Used the gpu'
else:
    print 'ERROR, not able to tell if theano used the cpu or the gpu'
    print train.maker.fgraph.toposort()


for i in range(training_steps):
    pred, err = train(D[0], D[1])
#print "Final model:"
#print w.get_value(), b.get_value()

print "target values for D"
print D[1]

print "prediction on D"
print predict(D[0])


# Print the picture graphs
# after compilation
if not os.path.exists('pics'):
    os.mkdir('pics')
theano.printing.pydotprint(predict,
                           outfile="pics/logreg_pydotprint_predic.png",
                           var_with_name_simple=True)
# before compilation
theano.printing.pydotprint_variables(prediction,
                           outfile="pics/logreg_pydotprint_prediction.png",
                           var_with_name_simple=True)
theano.printing.pydotprint(train,
                           outfile="pics/logreg_pydotprint_train.png",
                           var_with_name_simple=True)






Pretty Printing

theano.printing.pprint(variable)

>>> theano.printing.pprint(prediction)  # (pre-compilation)
gt((TensorConstant{1} / (TensorConstant{1} + exp(((-(x \\dot w)) - b)))),TensorConstant{0.5})








Debug Printing

theano.printing.debugprint({fct, variable, list of variables})

>>> theano.printing.debugprint(prediction)  # (pre-compilation)
Elemwise{gt,no_inplace} [@181772236] ''
 |Elemwise{true_div,no_inplace} [@181746668] ''
 | |InplaceDimShuffle{x} [@181746412] ''
 | | |TensorConstant{1} [@181745836]
 | |Elemwise{add,no_inplace} [@181745644] ''
 | | |InplaceDimShuffle{x} [@181745420] ''
 | | | |TensorConstant{1} [@181744844]
 | | |Elemwise{exp,no_inplace} [@181744652] ''
 | | | |Elemwise{sub,no_inplace} [@181744012] ''
 | | | | |Elemwise{neg,no_inplace} [@181730764] ''
 | | | | | |dot [@181729676] ''
 | | | | | | |x [@181563948]
 | | | | | | |w [@181729964]
 | | | | |InplaceDimShuffle{x} [@181743788] ''
 | | | | | |b [@181730156]
 |InplaceDimShuffle{x} [@181771788] ''
 | |TensorConstant{0.5} [@181771148]
>>> theano.printing.debugprint(predict)  # (post-compilation)
Elemwise{Composite{neg,{sub,{{scalar_sigmoid,GT},neg}}}} [@183160204] ''   2
 |dot [@183018796] ''   1
 | |x [@183000780]
 | |w [@183000812]
 |InplaceDimShuffle{x} [@183133580] ''   0
 | |b [@183000876]
 |TensorConstant{[ 0.5]} [@183084108]








Picture Printing

>>> theano.printing.pydotprint_variables(prediction)  # (pre-compilation)





[image: ../_images/logreg_pydotprint_prediction2.png]
Notice that pydotprint() requires Graphviz and Python’s pydot.

>>> theano.printing.pydotprint(predict)  # (post-compilation)





[image: ../_images/logreg_pydotprint_predic2.png]
>>> theano.printing.pydotprint(train) # This is a small train example!





[image: ../_images/logreg_pydotprint_train2.png]
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Derivatives in Theano


Computing Gradients

Now let’s use Theano for a slightly more sophisticated task: create a
function which computes the derivative of some expression y with
respect to its parameter x. To do this we will use the macro T.grad.
For instance, we can compute the
gradient of [image: x^2] with respect to [image: x]. Note that:
[image: d(x^2)/dx = 2 \cdot x].

Here is the code to compute this gradient:

>>> from theano import pp
>>> x = T.dscalar('x')
>>> y = x ** 2
>>> gy = T.grad(y, x)
>>> pp(gy)  # print out the gradient prior to optimization
'((fill((x ** 2), 1.0) * 2) * (x ** (2 - 1)))'
>>> f = function([x], gy)
>>> f(4)
array(8.0)
>>> f(94.2)
array(188.40000000000001)





In this example, we can see from pp(gy) that we are computing
the correct symbolic gradient.
fill((x ** 2), 1.0) means to make a matrix of the same shape as
x ** 2 and fill it with 1.0.


Note

The optimizer simplifies the symbolic gradient expression.  You can see
this by digging inside the internal properties of the compiled function.

pp(f.maker.fgraph.outputs[0])
'(2.0 * x)'





After optimization there is only one Apply node left in the graph, which
doubles the input.



We can also compute the gradient of complex expressions such as the
logistic function defined above. It turns out that the derivative of the
logistic is: [image: ds(x)/dx = s(x) \cdot (1 - s(x))].


[image: ../_images/dlogistic.png]
A plot of the gradient of the logistic function, with x on the x-axis
and [image: ds(x)/dx] on the y-axis.



>>> x = T.dmatrix('x')
>>> s = T.sum(1 / (1 + T.exp(-x)))
>>> gs = T.grad(s, x)
>>> dlogistic = function([x], gs)
>>> dlogistic([[0, 1], [-1, -2]])
array([[ 0.25      ,  0.19661193],
       [ 0.19661193,  0.10499359]])





In general, for any scalar expression s, T.grad(s, w) provides
the Theano expression for computing [image: \frac{\partial s}{\partial w}]. In
this way Theano can be used for doing efficient symbolic differentiation
(as the expression returned by T.grad will be optimized during compilation), even for
function with many inputs. (see automatic differentiation [http://en.wikipedia.org/wiki/Automatic_differentiation] for a description
of symbolic differentiation).


Note

The second argument of T.grad can be a list, in which case the
output is also a list. The order in both lists is important: element
i of the output list is the gradient of the first argument of
T.grad with respect to the i-th element of the list given as second argument.
The first argument of T.grad has to be a scalar (a tensor
of size 1). For more information on the semantics of the arguments of
T.grad and details about the implementation, see
this section of the library.

Additional information on the inner workings of differentiation may also be
found in the more advanced tutorial Extending Theano.






Computing the Jacobian

In Theano’s parlance, the term Jacobian designates the tensor comprising the
first partial derivatives of the output of a function with respect to its inputs.
(This is a generalization of to the so-called Jacobian matrix in Mathematics.)
Theano implements the theano.gradient.jacobian() macro that does all
that is needed to compute the Jacobian. The following text explains how
to do it manually.

In order to manually compute the Jacobian of some function y with
respect to some parameter x we need to use scan. What we
do is to loop over the entries in y and compute the gradient of
y[i] with respect to x.


Note

scan is a generic op in Theano that allows writing in a symbolic
manner all kinds of recurrent equations. While creating
symbolic loops (and optimizing them for performance) is a hard task,
effort is being done for improving the performance of scan. We
shall return to scan later in this tutorial.



>>> x = T.dvector('x')
>>> y = x ** 2
>>> J, updates = theano.scan(lambda i, y,x : T.grad(y[i], x), sequences=T.arange(y.shape[0]), non_sequences=[y,x])
>>> f = function([x], J, updates=updates)
>>> f([4, 4])
array([[ 8.,  0.],
       [ 0.,  8.]])





What we do in this code is to generate a sequence of ints from 0 to
y.shape[0] using T.arange. Then we loop through this sequence, and
at each step, we compute the gradient of element y[i] with respect to
x. scan automatically concatenates all these rows, generating a
matrix which corresponds to the Jacobian.


Note

There are some pitfalls to be aware of regarding T.grad. One of them is that you
cannot re-write the above expression of the Jacobian as
theano.scan(lambda y_i,x: T.grad(y_i,x), sequences=y,
non_sequences=x), even though from the documentation of scan this
seems possible. The reason is that y_i will not be a function of
x anymore, while y[i] still is.






Computing the Hessian

In Theano, the term Hessian has the usual mathematical acception: It is the
matrix comprising the second order partial derivative of a function with scalar
output and vector input. Theano implements theano.gradient.hessian() macro that does all
that is needed to compute the Hessian. The following text explains how
to do it manually.

You can compute the Hessian manually similarly to the Jacobian. The only
difference is that now, instead of computing the Jacobian of some expression
y, we compute the Jacobian of T.grad(cost,x), where cost is some
scalar.

>>> x = T.dvector('x')
>>> y = x ** 2
>>> cost = y.sum()
>>> gy = T.grad(cost, x)
>>> H, updates = theano.scan(lambda i, gy,x : T.grad(gy[i], x), sequences=T.arange(gy.shape[0]), non_sequences=[gy, x])
>>> f = function([x], H, updates=updates)
>>> f([4, 4])
array([[ 2.,  0.],
       [ 0.,  2.]])








Jacobian times a Vector

Sometimes we can express the algorithm in terms of Jacobians times vectors,
or vectors times Jacobians. Compared to evaluating the Jacobian and then
doing the product, there are methods that compute the desired results while
avoiding actual evaluation of the Jacobian. This can bring about significant
performance gains. A description of one such algorithm can be found here:


	Barak A. Pearlmutter, “Fast Exact Multiplication by the Hessian”, Neural
Computation, 1994



While in principle we would want Theano to identify these patterns automatically for us,
in practice, implementing such optimizations in a generic manner is extremely
difficult. Therefore, we provide special functions dedicated to these tasks.


R-operator

The R operator is built to evaluate the product between a Jacobian and a
vector, namely [image: \frac{\partial f(x)}{\partial x} v]. The formulation
can be extended even for x being a matrix, or a tensor in general, case in
which also the Jacobian becomes a tensor and the product becomes some kind
of tensor product. Because in practice we end up needing to compute such
expressions in terms of weight matrices, Theano supports this more generic
form of the operation. In order to evaluate the R-operation of
expression y, with respect to x, multiplying the Jacobian with v
you need to do something similar to this:

>>> W = T.dmatrix('W')
>>> V = T.dmatrix('V')
>>> x = T.dvector('x')
>>> y = T.dot(x, W)
>>> JV = T.Rop(y, W, V)
>>> f = theano.function([W, V, x], JV)
>>> f([[1, 1], [1, 1]], [[2, 2], [2, 2]], [0,1])
array([ 2.,  2.])





List of Op that implement Rop.




L-operator

In similitude to the R-operator, the L-operator would compute a row vector times
the Jacobian. The mathematical formula would be [image: v \frac{\partial f(x)}{\partial x}]. The L-operator is also supported for generic tensors
(not only for vectors). Similarly, it can be implemented as follows:

>>> W = T.dmatrix('W')
>>> v = T.dvector('v')
>>> x = T.dvector('x')
>>> y = T.dot(x, W)
>>> VJ = T.Lop(y, W, v)
>>> f = theano.function([v,x], VJ)
>>> f([2, 2], [0, 1])
array([[ 0.,  0.],
       [ 2.,  2.]])






Note

v, the point of evaluation, differs between the L-operator and the R-operator.
For the L-operator, the point of evaluation needs to have the same shape
as the output, whereas for the R-operator this point should
have the same shape as the input parameter. Furthermore, the results of these two
operations differ. The result of the L-operator is of the same shape
as the input parameter, while the result of the R-operator has a shape similar
to that of the output.








Hessian times a Vector

If you need to compute the Hessian times a vector, you can make use of the
above-defined operators to do it more efficiently than actually computing
the exact Hessian and then performing the product. Due to the symmetry of the
Hessian matrix, you have two options that will
give you the same result, though these options might exhibit differing performances.
Hence, we suggest profiling the methods before using either one of the two:

>>> x = T.dvector('x')
>>> v = T.dvector('v')
>>> y = T.sum(x ** 2)
>>> gy = T.grad(y, x)
>>> vH = T.grad(T.sum(gy * v), x)
>>> f = theano.function([x, v], vH)
>>> f([4, 4], [2, 2])
array([ 4.,  4.])





or, making use of the R-operator:

>>> x = T.dvector('x')
>>> v = T.dvector('v')
>>> y = T.sum(x ** 2)
>>> gy = T.grad(y, x)
>>> Hv = T.Rop(gy, x, v)
>>> f = theano.function([x, v], Hv)
>>> f([4, 4], [2, 2])
array([ 4.,  4.])








Final Pointers


	The grad function works symbolically: it receives and returns Theano variables.

	grad can be compared to a macro since it can be applied repeatedly.

	Scalar costs only can be directly handled by grad. Arrays are handled through repeated applications.

	Built-in functions allow to compute efficiently vector times Jacobian and vector times Hessian.

	Work is in progress on the optimizations required to compute efficiently the full
Jacobian and the Hessian matrix as well as the Jacobian times vector.
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Configuration Settings and Compiling Modes


Configuration

The config module contains several attributes that modify Theano’s behavior.  Many of these
attributes are examined during the import of the theano module and several are assumed to be
read-only.

As a rule, the attributes in the config module should not be modified inside the user code.

Theano’s code comes with default values for these attributes, but you can
override them from your .theanorc file, and override those values in turn by
the THEANO_FLAGS environment variable.

The order of precedence is:


	an assignment to theano.config.<property>

	an assignment in THEANO_FLAGS

	an assignment in the .theanorc file (or the file indicated in THEANORC)



You can display the current/effective configuration at any time by printing
theano.config.  For example, to see a list  of all active configuration
variables, type this from the command-line:

python -c 'import theano; print theano.config' | less





For more detail, see Configuration in the library.




Exercise

Consider the logistic regression:

import numpy
import theano
import theano.tensor as T
rng = numpy.random

N = 400
feats = 784
D = (rng.randn(N, feats).astype(theano.config.floatX),
rng.randint(size=N,low=0, high=2).astype(theano.config.floatX))
training_steps = 10000

# Declare Theano symbolic variables
x = T.matrix("x")
y = T.vector("y")
w = theano.shared(rng.randn(feats).astype(theano.config.floatX), name="w")
b = theano.shared(numpy.asarray(0., dtype=theano.config.floatX), name="b")
x.tag.test_value = D[0]
y.tag.test_value = D[1]
#print "Initial model:"
#print w.get_value(), b.get_value()

# Construct Theano expression graph
p_1 = 1 / (1 + T.exp(-T.dot(x, w)-b)) # Probability of having a one
prediction = p_1 > 0.5 # The prediction that is done: 0 or 1
xent = -y*T.log(p_1) - (1-y)*T.log(1-p_1) # Cross-entropy
cost = xent.mean() + 0.01*(w**2).sum() # The cost to optimize
gw,gb = T.grad(cost, [w,b])

# Compile expressions to functions
train = theano.function(
            inputs=[x,y],
            outputs=[prediction, xent],
            updates={w:w-0.01*gw, b:b-0.01*gb},
            name = "train")
predict = theano.function(inputs=[x], outputs=prediction,
            name = "predict")

if any([x.op.__class__.__name__ in ['Gemv', 'CGemv', 'Gemm', 'CGemm'] for x in
        train.maker.fgraph.toposort()]):
    print 'Used the cpu'
elif any([x.op.__class__.__name__ in ['GpuGemm', 'GpuGemv'] for x in
          train.maker.fgraph.toposort()]):
    print 'Used the gpu'
else:
    print 'ERROR, not able to tell if theano used the cpu or the gpu'
    print train.maker.fgraph.toposort()

for i in range(training_steps):
    pred, err = train(D[0], D[1])
#print "Final model:"
#print w.get_value(), b.get_value()

print "target values for D"
print D[1]

print "prediction on D"
print predict(D[0])





Modify and execute this example to run on CPU (the default) with floatX=float32 and
time the execution using the command line time python file.py.  Save your code
as it will be useful later on.


Note


	Apply the Theano flag floatX=float32 (through theano.config.floatX) in your code.

	Cast inputs before storing them into a shared variable.

	Circumvent the automatic cast of int32 with float32 to float64:
	Insert manual cast in your code or use [u]int{8,16}.

	Insert manual cast around the mean operator (this involves division by length, which is an int64).

	Notice that a new casting mechanism is being developed.









Solution






Mode

Every time theano.function is called,
the symbolic relationships between the input and output Theano variables
are optimized and compiled. The way this compilation occurs
is controlled by the value of the mode parameter.

Theano defines the following modes by name:


	'FAST_COMPILE': Apply just a few graph optimizations and only use Python implementations.



	'FAST_RUN': Apply all optimizations and use C implementations where possible.



	
	'DebugMode: Verify the correctness of all optimizations, and compare C and Python

	implementations. This mode can take much longer than the other modes, but can identify
several kinds of problems.







	'ProfileMode' (deprecated): Same optimization as FAST_RUN, but print some profiling information.





The default mode is typically FAST_RUN, but it can be controlled via
the configuration variable config.mode,
which can be overridden by passing the keyword argument to
theano.function.








	short name
	Full constructor
	What does it do?




	FAST_COMPILE
	compile.mode.Mode(linker='py', optimizer='fast_compile')
	Python implementations only, quick and cheap graph transformations


	FAST_RUN
	compile.mode.Mode(linker='cvm', optimizer='fast_run')
	C implementations where available, all available graph transformations.


	DebugMode
	compile.debugmode.DebugMode()
	Both implementations where available, all available graph transformations.


	ProfileMode
	compile.profilemode.ProfileMode()
	Deprecated. C implementations where available, all available graph transformations, print profile information.






Note

For debugging purpose, there also exists a MonitorMode (which has no
short name). It can be used to step through the execution of a function:
see the debugging FAQ for details.






Linkers

A mode is composed of 2 things: an optimizer and a linker. Some modes,
like ProfileMode and DebugMode, add logic around the optimizer and
linker. ProfileMode and DebugMode use their own linker.

You can select which linker to use with the Theano flag config.linker.
Here is a table to compare the different linkers.










	linker
	gc [1]
	Raise error by op
	Overhead
	Definition




	cvm
	yes
	yes
	“++”
	As c|py, but the runtime algo to execute the code is in c


	cvm_nogc
	no
	yes
	“+”
	As cvm, but without gc


	c|py [2]
	yes
	yes
	“+++”
	Try C code. If none exists for an op, use Python


	c|py_nogc
	no
	yes
	“++”
	As c|py, but without gc


	c
	no
	yes
	“+”
	Use only C code (if none available for an op, raise an error)


	py
	yes
	yes
	“+++”
	Use only Python code


	ProfileMode
	no
	no
	“++++”
	(Deprecated) Compute some extra profiling info


	DebugMode
	no
	yes
	VERY HIGH
	Make many checks on what Theano computes








	[1]	Garbage collection of intermediate results during computation.
Otherwise, their memory space used by the ops is kept between
Theano function calls, in order not to
reallocate memory, and lower the overhead (make it faster...).







	[2]	Default




For more detail, see Mode in the library.




Using DebugMode

While normally you should use the FAST_RUN or FAST_COMPILE mode,
it is useful at first (especially when you are defining new kinds of
expressions or new optimizations) to run your code using the DebugMode
(available via mode='DebugMode). The DebugMode is designed to
run several self-checks and assertions that can help diagnose
possible programming errors leading to incorrect output. Note that
DebugMode is much slower than FAST_RUN or FAST_COMPILE so
use it only during development (not when you launch 1000 processes on a
cluster!).

DebugMode is used as follows:

x = T.dvector('x')

f = theano.function([x], 10 * x, mode='DebugMode')

f([5])
f([0])
f([7])





If any problem is detected, DebugMode will raise an exception according to
what went wrong, either at call time (f(5)) or compile time (
f = theano.function(x, 10 * x, mode='DebugMode')). These exceptions
should not be ignored; talk to your local Theano guru or email the
users list if you cannot make the exception go away.

Some kinds of errors can only be detected for certain input value combinations.
In the example above, there is no way to guarantee that a future call to, say
f(-1), won’t cause a problem.  DebugMode is not a silver bullet.

If you instantiate DebugMode using the constructor (see DebugMode)
rather than the keyword DebugMode you can configure its behaviour via
constructor arguments. The keyword version of DebugMode (which you get by using mode='DebugMode')
is quite strict.

For more detail, see DebugMode in the library.




ProfileMode


Note

ProfileMode is deprecated. Use config.profile instead.



Besides checking for errors, another important task is to profile your
code. For this Theano uses a special mode called ProfileMode which has
to be passed as an argument to theano.function.
Using the ProfileMode is a three-step process.


Note

To switch the default accordingly, set the Theano flag
config.mode to ProfileMode.  In that case, when the Python
process exits, it will automatically print the profiling
information on the standard output.

The memory profile of the output of each apply node can be enabled with the
Theano flag config.ProfileMode.profile_memory.



For more detail, see ProfileMode in the library.


Creating a ProfileMode Instance

First create a ProfileMode instance:

>>> from theano import ProfileMode
>>> profmode = theano.ProfileMode(optimizer='fast_run', linker=theano.gof.OpWiseCLinker())





The ProfileMode constructor takes as input an optimizer and a
linker. Which optimizer and linker to use will depend on the
application. For example, a user wanting to profile the Python
implementation only, should use the gof.PerformLinker (or “py” for
short). On the other hand, a user wanting to profile his graph using C
implementations wherever possible should use the gof.OpWiseCLinker
(or “c|py”). For testing the speed of your code we would recommend
using the fast_run optimizer and the gof.OpWiseCLinker linker.




Compiling your Graph with ProfileMode

Once the ProfileMode instance is created, simply compile your graph as you
would normally, by specifying the mode parameter.

>>> # with functions
>>> f = theano.function([input1,input2],[output1], mode=profmode)








Retrieving Timing Information

Once your graph is compiled, simply run the program or operation you wish to
profile, then call profmode.print_summary(). This will provide you with
the desired timing information, indicating where your graph is spending most
of its time. This is best shown through an example. Let’s use our logistic
regression example.

Compiling the module with ProfileMode and calling profmode.print_summary()
generates the following output:

"""
ProfileMode.print_summary()
---------------------------

local_time 0.0749197006226 (Time spent running thunks)
Apply-wise summary: <fraction of local_time spent at this position> (<Apply position>, <Apply Op name>)
        0.069   15      _dot22
        0.064   1       _dot22
        0.053   0       InplaceDimShuffle{x,0}
        0.049   2       InplaceDimShuffle{1,0}
        0.049   10      mul
        0.049   6       Elemwise{ScalarSigmoid{output_types_preference=<theano.scalar.basic.transfer_type object at 0x171e650>}}[(0, 0)]
        0.049   3       InplaceDimShuffle{x}
        0.049   4       InplaceDimShuffle{x,x}
        0.048   14      Sum{0}
        0.047   7       sub
        0.046   17      mul
        0.045   9       sqr
        0.045   8       Elemwise{sub}
        0.045   16      Sum
        0.044   18      mul
   ... (remaining 6 Apply instances account for 0.25 of the runtime)
Op-wise summary: <fraction of local_time spent on this kind of Op> <Op name>
        0.139   * mul
        0.134   * _dot22
        0.092   * sub
        0.085   * Elemwise{Sub{output_types_preference=<theano.scalar.basic.transfer_type object at 0x1779f10>}}[(0, 0)]
        0.053   * InplaceDimShuffle{x,0}
        0.049   * InplaceDimShuffle{1,0}
        0.049   * Elemwise{ScalarSigmoid{output_types_preference=<theano.scalar.basic.transfer_type object at 0x171e650>}}[(0, 0)]
        0.049   * InplaceDimShuffle{x}
        0.049   * InplaceDimShuffle{x,x}
        0.048   * Sum{0}
        0.045   * sqr
        0.045   * Sum
        0.043   * Sum{1}
        0.042   * Elemwise{Mul{output_types_preference=<theano.scalar.basic.transfer_type object at 0x17a0f50>}}[(0, 1)]
        0.041   * Elemwise{Add{output_types_preference=<theano.scalar.basic.transfer_type object at 0x1736a50>}}[(0, 0)]
        0.039   * Elemwise{Second{output_types_preference=<theano.scalar.basic.transfer_type object at 0x1736d90>}}[(0, 1)]
   ... (remaining 0 Ops account for 0.00 of the runtime)
(*) Op is running a c implementation

"""





This output has two components. In the first section called
Apply-wise summary, timing information is provided for the worst
offending Apply nodes. This corresponds to individual op applications
within your graph which took longest to execute (so if you use
dot twice, you will see two entries there). In the second portion,
the Op-wise summary, the execution time of all Apply nodes executing
the same op are grouped together and the total execution time per op
is shown (so if you use dot twice, you will see only one entry
there corresponding to the sum of the time spent in each of them).
Finally, notice that the ProfileMode also shows which ops were running a C
implementation.

For more detail, see ProfileMode in the library.
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Loading and Saving

Python’s standard way of saving class instances and reloading them
is the pickle [http://docs.python.org/library/pickle.html] mechanism. Many Theano objects can be serialized (and
deserialized) by pickle, however, a limitation of pickle is that
it does not save the code or data of a class along with the instance of
the class being serialized. As a result, reloading objects created by a
previous version of a class can be really problematic.

Thus, you will want to consider different mechanisms depending on
the amount of time you anticipate between saving and reloading.  For
short-term (such as temp files and network transfers), pickling of
the Theano objects or classes is possible.  For longer-term (such as
saving models from an experiment) you should not rely on pickled Theano
objects; we recommend loading and saving the underlying shared objects
as you would in the course of any other Python program.


The Basics of Pickling

The two modules pickle and cPickle have the same functionalities, but
cPickle, coded in C, is much faster.

>>> import cPickle





You can serialize (or save, or pickle) objects to a file with
cPickle.dump:

>>> f = file('obj.save', 'wb')
>>> cPickle.dump(my_obj, f, protocol=cPickle.HIGHEST_PROTOCOL)
>>> f.close()






Note

If you want your saved object to be stored efficiently, don’t forget
to use cPickle.HIGHEST_PROTOCOL. The resulting file can be
dozens of times smaller than with the default protocol.




Note

Opening your file in binary mode ('b') is required for portability
(especially between Unix and Windows).



To de-serialize (or load, or unpickle) a pickled file, use
cPickle.load:

>>> f = file('obj.save', 'rb')
>>> loaded_obj = cPickle.load(f)
>>> f.close()





You can pickle several objects into the same file, and load them all (in the
same order):

>>> f = file('objects.save', 'wb')
>>> for obj in [obj1, obj2, obj3]:
>>>     cPickle.dump(obj, f, protocol=cPickle.HIGHEST_PROTOCOL)
>>> f.close()





Then:

>>> f = file('objects.save', 'rb')
>>> loaded_objects = []
>>> for i in range(3):
>>>     loaded_objects.append(cPickle.load(f))
>>> f.close()





For more details about pickle’s usage, see
Python documentation [http://docs.python.org/library/pickle.html#usage].




Short-Term Serialization

If you are confident that the class instance you are serializing will be
deserialized by a compatible version of the code, pickling the whole model is
an adequate solution. It would be the case, for instance, if you are saving
models and reloading them during the same execution of your program, or if the
class you’re saving has been really stable for a while.

You can control what pickle will save from your object, by defining a
__getstate__ [http://docs.python.org/library/pickle.html#object.__getstate__] method,
and similarly __setstate__ [http://docs.python.org/library/pickle.html#object.__getstate__].

This will be especially useful if, for instance, your model class contains a
link to the data set currently in use, that you probably don’t want to pickle
along every instance of your model.

For instance, you can define functions along the lines of:

def __getstate__(self):
    state = dict(self.__dict__)
    del state['training_set']
    return state

def __setstate__(self, d):
    self.__dict__.update(d)
    self.training_set = cPickle.load(file(self.training_set_file, 'rb'))








Long-Term Serialization

If the implementation of the class you want to save is quite unstable, for
instance if functions are created or removed, class members are renamed, you
should save and load only the immutable (and necessary) part of your class.

You can do that by defining __getstate__ and __setstate__ functions as above,
maybe defining the attributes you want to save, rather than the ones you
don’t.

For instance, if the only parameters you want to save are a weight
matrix W and a bias b, you can define:

def __getstate__(self):
    return (self.W, self.b)

def __setstate__(self, state):
    W, b = state
    self.W = W
    self.b = b





If at some point in time W is renamed to weights and b to
bias, the older pickled files will still be usable, if you update these
functions to reflect the change in name:

def __getstate__(self):
    return (self.weights, self.bias)

def __setstate__(self, state):
    W, b = state
    self.weights = W
    self.bias = b





For more information on advanced use of pickle and its internals, see Python’s
pickle [http://docs.python.org/library/pickle.html] documentation.
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Conditions


IfElse vs Switch


	Both ops build a condition over symbolic variables.

	IfElse takes a boolean condition and two variables as inputs.

	Switch takes a tensor as condition and two variables as inputs.
switch is an elementwise operation and is thus more general than ifelse.

	Whereas switch evaluates both output variables, ifelse is lazy and only
evaluates one variable with respect to the condition.



Example

from theano import tensor as T
from theano.ifelse import ifelse
import theano, time, numpy

a,b = T.scalars('a', 'b')
x,y = T.matrices('x', 'y')

z_switch = T.switch(T.lt(a, b), T.mean(x), T.mean(y))
z_lazy = ifelse(T.lt(a, b), T.mean(x), T.mean(y))

f_switch = theano.function([a, b, x, y], z_switch,
                    mode=theano.Mode(linker='vm'))
f_lazyifelse = theano.function([a, b, x, y], z_lazy,
                    mode=theano.Mode(linker='vm'))

val1 = 0.
val2 = 1.
big_mat1 = numpy.ones((10000, 1000))
big_mat2 = numpy.ones((10000, 1000))

n_times = 10

tic = time.clock()
for i in xrange(n_times):
    f_switch(val1, val2, big_mat1, big_mat2)
print 'time spent evaluating both values %f sec' % (time.clock() - tic)

tic = time.clock()
for i in xrange(n_times):
    f_lazyifelse(val1, val2, big_mat1, big_mat2)
print 'time spent evaluating one value %f sec' % (time.clock() - tic)





In this example, the IfElse op spends less time (about half as much) than Switch
since it computes only one variable out of the two.

>>> python ifelse_switch.py
time spent evaluating both values 0.6700 sec
time spent evaluating one value 0.3500 sec





Unless linker='vm' or linker='cvm' are used, ifelse will compute both
variables and take the same computation time as switch. Although the linker
is not currently set by default to cvm, it will be in the near future.

There is no automatic optimization replacing a switch with a
broadcasted scalar to an ifelse, as this is not always faster. See
this ticket [http://www.assembla.com/spaces/theano/tickets/764].
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Loop


Scan


	A general form of recurrence, which can be used for looping.

	Reduction and map (loop over the leading dimensions) are special cases of scan.

	You scan a function along some input sequence, producing an output at each time-step.

	The function can see the previous K time-steps of your function.

	sum() could be computed by scanning the z + x(i) function over a list, given an initial state of z=0.

	Often a for loop can be expressed as a scan() operation, and scan is the closest that Theano comes to looping.

	Advantages of using scan over for loops:
	Number of iterations to be part of the symbolic graph.

	Minimizes GPU transfers (if GPU is involved).

	Computes gradients through sequential steps.

	Slightly faster than using a for loop in Python with a compiled Theano function.

	Can lower the overall memory usage by detecting the actual amount of memory needed.







The full documentation can be found in the library: Scan.

Scan Example: Computing tanh(x(t).dot(W) + b) elementwise

import theano
import theano.tensor as T
import numpy as np

# defining the tensor variables
X = T.matrix("X")
W = T.matrix("W")
b_sym = T.vector("b_sym")

results, updates = theano.scan(lambda v: T.tanh(T.dot(v, W) + b_sym), sequences=X)
compute_elementwise = theano.function(inputs=[X, W, b_sym], outputs=[results])

# test values
x = np.eye(2, dtype=theano.config.floatX)
w = np.ones((2, 2), dtype=theano.config.floatX)
b = np.ones((2), dtype=theano.config.floatX)
b[1] = 2

print compute_elementwise(x, w, b)[0]

# comparison with numpy
print np.tanh(x.dot(w) + b)





Scan Example: Computing the sequence x(t) = tanh(x(t - 1).dot(W) + y(t).dot(U) + p(T - t).dot(V))

import theano
import theano.tensor as T
import numpy as np

# define tensor variables
X = T.vector("X")
W = T.matrix("W")
b_sym = T.vector("b_sym")
U = T.matrix("U")
Y = T.matrix("Y")
V = T.matrix("V")
P = T.matrix("P")

results, updates = theano.scan(lambda y, p, x_tm1: T.tanh(T.dot(x_tm1, W) + T.dot(y, U) + T.dot(p, V)),
          sequences=[Y, P[::-1]], outputs_info=[X])
compute_seq = theano.function(inputs=[X, W, Y, U, P, V], outputs=[results])

# test values
x = np.zeros((2), dtype=theano.config.floatX)
x[1] = 1
w = np.ones((2, 2), dtype=theano.config.floatX)
y = np.ones((5, 2), dtype=theano.config.floatX)
y[0, :] = -3
u = np.ones((2, 2), dtype=theano.config.floatX)
p = np.ones((5, 2), dtype=theano.config.floatX)
p[0, :] = 3
v = np.ones((2, 2), dtype=theano.config.floatX)

print compute_seq(x, w, y, u, p, v)[0]

# comparison with numpy
x_res = np.zeros((5, 2), dtype=theano.config.floatX)
x_res[0] = np.tanh(x.dot(w) + y[0].dot(u) + p[4].dot(v))
for i in range(1, 5):
  x_res[i] = np.tanh(x_res[i - 1].dot(w) + y[i].dot(u) + p[4-i].dot(v))
print x_res





Scan Example: Computing norms of lines of X

import theano
import theano.tensor as T
import numpy as np

# define tensor variable
X = T.matrix("X")
results, updates = theano.scan(lambda x_i: T.sqrt((x_i ** 2).sum()), sequences=[X])
compute_norm_lines = theano.function(inputs=[X], outputs=[results])

# test value
x = np.diag(np.arange(1, 6, dtype=theano.config.floatX), 1)
print compute_norm_lines(x)[0]

# comparison with numpy
print np.sqrt((x ** 2).sum(1))





Scan Example: Computing norms of columns of X

import theano
import theano.tensor as T
import numpy as np

# define tensor variable
X = T.matrix("X")
results, updates = theano.scan(lambda x_i: T.sqrt((x_i ** 2).sum()), sequences=[X.T])
compute_norm_cols = theano.function(inputs=[X], outputs=[results])

# test value
x = np.diag(np.arange(1, 6, dtype=theano.config.floatX), 1)
print compute_norm_cols(x)[0]

# comparison with numpy
print np.sqrt((x ** 2).sum(0))





Scan Example: Computing trace of X

import theano
import theano.tensor as T
import numpy as np
floatX = "float32"

# define tensor variable
X = T.matrix("X")
results, updates = theano.scan(lambda i, j, t_f: T.cast(X[i, j] + t_f, floatX),
                  sequences=[T.arange(X.shape[0]), T.arange(X.shape[1])],
                  outputs_info=np.asarray(0., dtype=floatX))
result = results[-1]
compute_trace = theano.function(inputs=[X], outputs=[result])

# test value
x = np.eye(5, dtype=theano.config.floatX)
x[0] = np.arange(5, dtype=theano.config.floatX)
print compute_trace(x)[0]

# comparison with numpy
print np.diagonal(x).sum()





Scan Example: Computing the sequence x(t) = x(t - 2).dot(U) + x(t - 1).dot(V) +  tanh(x(t - 1).dot(W)  + b)

import theano
import theano.tensor as T
import numpy as np

# define tensor variables
X = T.matrix("X")
W = T.matrix("W")
b_sym = T.vector("b_sym")
U = T.matrix("U")
V = T.matrix("V")
n_sym = T.iscalar("n_sym")

results, updates = theano.scan(lambda x_tm2, x_tm1: T.dot(x_tm2, U) + T.dot(x_tm1, V) + T.tanh(T.dot(x_tm1, W) + b_sym),
                    n_steps=n_sym, outputs_info=[dict(initial=X, taps=[-2, -1])])
compute_seq2 = theano.function(inputs=[X, U, V, W, b_sym, n_sym], outputs=[results])

# test values
x = np.zeros((2, 2), dtype=theano.config.floatX) # the initial value must be able to return x[-2]
x[1, 1] = 1
w = 0.5 * np.ones((2, 2), dtype=theano.config.floatX)
u = 0.5 * (np.ones((2, 2), dtype=theano.config.floatX) - np.eye(2, dtype=theano.config.floatX))
v = 0.5 * np.ones((2, 2), dtype=theano.config.floatX)
n = 10
b = np.ones((2), dtype=theano.config.floatX)

print compute_seq2(x, u, v, w, b, n)

# comparison with numpy
x_res = np.zeros((10, 2))
x_res[0] = x[0].dot(u) + x[1].dot(v) + np.tanh(x[1].dot(w) + b)
x_res[1] = x[1].dot(u) + x_res[0].dot(v) + np.tanh(x_res[0].dot(w) + b)
x_res[2] = x_res[0].dot(u) + x_res[1].dot(v) + np.tanh(x_res[1].dot(w) + b)
for i in range(2, 10):
  x_res[i] = (x_res[i - 2].dot(u) + x_res[i - 1].dot(v) +
              np.tanh(x_res[i - 1].dot(w) + b))
print x_res





Scan Example: Computing the Jacobian of y = tanh(v.dot(A)) wrt x

import theano
import theano.tensor as T
import numpy as np

# define tensor variables
v = T.vector()
A = T.matrix()
y = T.tanh(T.dot(v, A))
results, updates = theano.scan(lambda i: T.grad(y[i], v), sequences=[T.arange(y.shape[0])])
compute_jac_t = theano.function([A, v], [results], allow_input_downcast=True) # shape (d_out, d_in)

# test values
x = np.eye(5, dtype=theano.config.floatX)[0]
w = np.eye(5, 3, dtype=theano.config.floatX)
w[2] = np.ones((3), dtype=theano.config.floatX)
print compute_jac_t(w, x)[0]

# compare with numpy
print ((1 - np.tanh(x.dot(w)) ** 2) * w).T





Note that we need to iterate over the indices of y and not over the elements of y. The reason is that scan create a placeholder variable for its internal function and this placeholder variable does not have the same dependencies than the variables that will replace it.

Scan Example: Accumulate number of loop during a scan

import theano
import theano.tensor as T
import numpy as np

# define shared variables
k = theano.shared(0)
n_sym = T.iscalar("n_sym")

results, updates = theano.scan(lambda:{k:(k + 1)}, n_steps=n_sym)
accumulator = theano.function([n_sym], [], updates=updates, allow_input_downcast=True)

k.get_value()
accumulator(5)
k.get_value()





Scan Example: Computing tanh(v.dot(W) + b) * d where d is binomial

import theano
import theano.tensor as T
import numpy as np

# define tensor variables
X = T.matrix("X")
W = T.matrix("W")
b_sym = T.vector("b_sym")

# define shared random stream
trng = T.shared_randomstreams.RandomStreams(1234)
d=trng.binomial(size=W[1].shape)

results, updates = theano.scan(lambda v: T.tanh(T.dot(v, W) + b_sym) * d, sequences=X)
compute_with_bnoise = theano.function(inputs=[X, W, b_sym], outputs=[results],
                          updates=updates, allow_input_downcast=True)
x = np.eye(10, 2, dtype=theano.config.floatX)
w = np.ones((2, 2), dtype=theano.config.floatX)
b = np.ones((2), dtype=theano.config.floatX)

print compute_with_bnoise(x, w, b)





Note that if you want to use a random variable d that will not be updated through scan loops, you should pass this variable as a non_sequences arguments.

Scan Example: Computing pow(A, k)

import theano
import theano.tensor as T
theano.config.warn.subtensor_merge_bug = False

k = T.iscalar("k")
A = T.vector("A")

def inner_fct(prior_result, B):
    return prior_result * B

# Symbolic description of the result
result, updates = theano.scan(fn=inner_fct,
                            outputs_info=T.ones_like(A),
                            non_sequences=A, n_steps=k)

# Scan has provided us with A ** 1 through A ** k.  Keep only the last
# value. Scan notices this and does not waste memory saving them.
final_result = result[-1]

power = theano.function(inputs=[A, k], outputs=final_result,
                      updates=updates)

print power(range(10), 2)
#[  0.   1.   4.   9.  16.  25.  36.  49.  64.  81.]





Scan Example: Calculating a Polynomial

import numpy
import theano
import theano.tensor as T
theano.config.warn.subtensor_merge_bug = False

coefficients = theano.tensor.vector("coefficients")
x = T.scalar("x")
max_coefficients_supported = 10000

# Generate the components of the polynomial
full_range=theano.tensor.arange(max_coefficients_supported)
components, updates = theano.scan(fn=lambda coeff, power, free_var:
                                   coeff * (free_var ** power),
                                outputs_info=None,
                                sequences=[coefficients, full_range],
                                non_sequences=x)

polynomial = components.sum()
calculate_polynomial = theano.function(inputs=[coefficients, x],
                                     outputs=polynomial)

test_coeff = numpy.asarray([1, 0, 2], dtype=numpy.float32)
print calculate_polynomial(test_coeff, 3)
# 19.0








Exercise

Run both examples.

Modify and execute the polynomial example to have the reduction done by scan.

Solution
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Sparse

In general, sparse matrices provide the same functionality as regular
matrices. The difference lies in the way the elements of sparse matrices are
represented and stored in memory. Only the non-zero elements of the latter are stored.
This has some potential advantages: first, this
may obviously lead to reduced memory usage and, second, clever
storage methods may lead to reduced computation time through the use of
sparse specific algorithms. We usually refer to the generically stored matrices
as dense matrices.

Theano’s sparse package provides efficient algorithms, but its use is not recommended
in all cases or for all matrices. As an obvious example, consider the case where
the sparsity proportion if very low. The sparsity proportion refers to the
ratio of the number of zero elements to the number of all elements in a matrix.
A low sparsity proportion may result in the use of more space in memory
since not only the actual data is stored, but also the position of nearly every
element of the matrix. This would also require more computation
time whereas a dense matrix representation along with regular optimized algorithms might do a
better job. Other examples may be found at the nexus of the specific purpose and structure
of the matrices. More documentation may be found in the
SciPy Sparse Reference [http://docs.scipy.org/doc/scipy/reference/sparse.html].

Since sparse matrices are not stored in contiguous arrays, there are several
ways to represent them in memory. This is usually designated by the so-called format
of the matrix. Since Theano’s sparse matrix package is based on the SciPy
sparse package, complete information about sparse matrices can be found
in the SciPy documentation. Like SciPy, Theano does not implement sparse formats for
arrays with a number of dimensions different from two.

So far, Theano implements two formats of sparse matrix: csc and csr.
Those are almost identical except that csc is based on the columns of the
matrix and csr is based on its rows. They both have the same purpose:
to provide for the use of efficient algorithms performing linear algebra operations.
A disadvantage is that they fail to give an efficient way to modify the sparsity structure
of the underlying matrix, i.e. adding new elements. This means that if you are
planning to add new elements in a sparse matrix very often in your computational graph,
perhaps a tensor variable could be a better choice.

More documentation may be found in the Sparse Library Reference.

Before going further, here are the import statements that are assumed for the rest of the
tutorial:

>>> import theano
>>> import numpy as np
>>> import scipy.sparse as sp
>>> from theano import sparse






Compressed Sparse Format

Theano supports two compressed sparse formats  csc and csr, respectively based on columns
and rows. They have both the same attributes: data, indices, indptr and shape.



	The data attribute is a one-dimentionnal ndarray which contains all the non-zero
elements of the sparse matrix.

	The indices and indptr attributes are used to store the position of the data in the
sparse matrix.

	The shape attribute is exactly the same as the shape attribute of a dense (i.e. generic)
matrix. It can be explicitly specified at the creation of a sparse matrix if it cannot be infered
from the first three attributes.







Which format should I use?

At the end, the format does not affect the length of the data and indices attributes. They are both
completly fixed by the number of elements you want to store. The only thing that changes with the format
is indptr. In csc format, the matrix is compressed along columns so a lower number of columns will
result in less memory use. On the other hand, with the csr format, the matrix is compressed along
the rows and with a matrix that have a lower number of rows, csr format is a better choice. So here is the rule:


Note

If shape[0] > shape[1], use csr format. Otherwise, use csc.



Sometimes, since the sparse module is young, ops does not exist for both format. So here is
what may be the most relevent rule:


Note

Use the format compatible with the ops in your computation graph.



The documentation about the ops and their supported format may be found in
the Sparse Library Reference.






Handling Sparse in Theano

Most of the ops in Theano depend on the format of the sparse matrix.
That is why there are two kinds of constructors of sparse variables:
csc_matrix and csr_matrix. These can be called with the usual
name and dtype parameters, but no broadcastable flags are
allowed. This is forbidden since the sparse package, as the SciPy sparse module,
does not provide any way to handle a number of dimensions different from two.
The set of all accepted dtype for the sparse matrices can be found in
sparse.all_dtypes.

>>> sparse.all_dtypes
set(['int8', 'int16', 'int32', 'int64', 'uint8', 'uint16', 'uint32', 'uint64',
     'float32', 'float64', 'complex64', 'complex128'])






To and Fro

To move back and forth from a dense matrix to a sparse matrix representation, Theano
provides the dense_from_sparse, csr_from_dense and
csc_from_dense functions. No additional detail must be provided. Here is
an example that performs a full cycle from sparse to sparse:

>>> x = sparse.csc_matrix(name='x', dtype='float32')
>>> y = sparse.dense_from_sparse(x)
>>> z = sparse.csc_from_dense(y)








Properties and Construction

Although sparse variables do not allow direct access to their properties,
this can be accomplished using the csm_properties function. This will return
a tuple of one-dimensional tensor variables that represents the internal characteristics
of the sparse matrix.

In order to reconstruct a sparse matrix from some properties, the functions CSC
and CSR can be used. This will create the sparse matrix in the desired
format. As an example, the following code reconstructs a csc matrix into
a csr one.

>>> x = sparse.csc_matrix(name='x', dtype='int64')
>>> data, indices, indptr, shape = sparse.csm_properties(x)
>>> y = sparse.CSR(data, indices, indptr, shape)
>>> f = theano.function([x], y)
>>> a = sp.csc_matrix(np.asarray([[0, 1, 1], [0, 0, 0], [1, 0, 0]]))
>>> print a.toarray()
[[0 1 1]
 [0 0 0]
 [1 0 0]]
>>> print f(a).toarray()
[[0 0 1]
 [1 0 0]
 [1 0 0]]





The last example shows that one format can be obtained from transposition of
the other. Indeed, when calling the transpose function,
the sparse characteristics of the resulting matrix cannot be the same as the one
provided as input.




Structured Operation

Several ops are set to make use of the very peculiar structure of the sparse
matrices. These ops are said to be structured and simply do not perform any
computations on the zero elements of the sparse matrix. They can be thought as being
applied only to the data attribute of the latter. Note that these structured ops
provide a structured gradient. More explication below.

>>> x = sparse.csc_matrix(name='x', dtype='float32')
>>> y = sparse.structured_add(x, 2)
>>> f = theano.function([x], y)
>>> a = sp.csc_matrix(np.asarray([[0, 0, -1], [0, -2, 1], [3, 0, 0]], dtype='float32'))
>>> print a.toarray()
[[ 0.  0. -1.]
 [ 0. -2.  1.]
 [ 3.  0.  0.]]
>>> print f(a).toarray()
[[ 0.  0.  1.]
 [ 0.  0.  3.]
 [ 5.  0.  0.]]








Gradient

The gradients of the ops in the sparse module can also be structured. Some ops provide
a flag to indicate if the gradient is to be structured or not. The documentation can
be used to determine if the gradient of an op is regular or structured or if its
implementation can be modified. Similarly to structured ops, when a structured gradient is calculated, the
computation is done only for the non-zero elements of the sparse matrix.

More documentation regarding the gradients of specific ops can be found in the
Sparse Library Reference.









          

      

      

    


    
         Copyright 2008--2015, LISA lab.
      Last updated on Mar 27, 2015.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Theano 0.7 documentation 

          	Tutorial 
 
      

    


    
      
          
            
  
Using the GPU

For an introductory discussion of Graphical Processing Units (GPU)
and their use for intensive parallel computation purposes, see GPGPU [http://en.wikipedia.org/wiki/GPGPU].

One of Theano’s design goals is to specify computations at an abstract
level, so that the internal function compiler has a lot of flexibility
about how to carry out those computations.  One of the ways we take
advantage of this flexibility is in carrying out calculations on a
graphics card.

There are two ways currently to use a gpu, one of which only supports NVIDIA cards (CUDA backend) and the other, in development, that should support any OpenCL device as well as NVIDIA cards (GpuArray Backend).


CUDA backend

If you have not done so already, you will need to install Nvidia’s
GPU-programming toolchain (CUDA) and configure Theano to use it.
We provide installation instructions for Linux,
MacOS and Windows.


Testing Theano with GPU

To see if your GPU is being used, cut and paste the following program into a
file and run it.

from theano import function, config, shared, sandbox
import theano.tensor as T
import numpy
import time

vlen = 10 * 30 * 768  # 10 x #cores x # threads per core
iters = 1000

rng = numpy.random.RandomState(22)
x = shared(numpy.asarray(rng.rand(vlen), config.floatX))
f = function([], T.exp(x))
print f.maker.fgraph.toposort()
t0 = time.time()
for i in xrange(iters):
    r = f()
t1 = time.time()
print 'Looping %d times took' % iters, t1 - t0, 'seconds'
print 'Result is', r
if numpy.any([isinstance(x.op, T.Elemwise) for x in f.maker.fgraph.toposort()]):
    print 'Used the cpu'
else:
    print 'Used the gpu'





The program just computes the exp() of a bunch of random numbers.
Note that we use the shared function to
make sure that the input x is stored on the graphics device.

If I run this program (in check1.py) with device=cpu, my computer takes a little over 3 seconds,
whereas on the GPU it takes just over 0.64 seconds. The GPU will not always produce the exact
same floating-point numbers as the CPU. As a benchmark, a loop that calls numpy.exp(x.get_value()) takes about 46 seconds.

$ THEANO_FLAGS=mode=FAST_RUN,device=cpu,floatX=float32 python check1.py
[Elemwise{exp,no_inplace}(<TensorType(float32, vector)>)]
Looping 1000 times took 3.06635117531 seconds
Result is [ 1.23178029  1.61879337  1.52278066 ...,  2.20771813  2.29967761
  1.62323284]
Used the cpu

$ THEANO_FLAGS=mode=FAST_RUN,device=gpu,floatX=float32 python check1.py
Using gpu device 0: GeForce GTX 580
[GpuElemwise{exp,no_inplace}(<CudaNdarrayType(float32, vector)>), HostFromGpu(GpuElemwise{exp,no_inplace}.0)]
Looping 1000 times took 0.638810873032 seconds
Result is [ 1.23178029  1.61879349  1.52278066 ...,  2.20771813  2.29967761
  1.62323296]
Used the gpu





Note that GPU operations in Theano require for now floatX to be float32 (see also below).




Returning a Handle to Device-Allocated Data

The speedup is not greater in the preceding example because the function is
returning its result as a NumPy ndarray which has already been copied from the
device to the host for your convenience.  This is what makes it so easy to swap in device=gpu, but
if you don’t mind less portability, you might gain a bigger speedup by changing
the graph to express a computation with a GPU-stored result.  The gpu_from_host
op means “copy the input from the host to the GPU” and it is optimized away
after the T.exp(x) is replaced by a GPU version of exp().

from theano import function, config, shared, sandbox
import theano.tensor as T
import numpy
import time

vlen = 10 * 30 * 768  # 10 x #cores x # threads per core
iters = 1000

rng = numpy.random.RandomState(22)
x = shared(numpy.asarray(rng.rand(vlen), config.floatX))
f = function([], sandbox.cuda.basic_ops.gpu_from_host(T.exp(x)))
print f.maker.fgraph.toposort()
t0 = time.time()
for i in xrange(iters):
    r = f()
t1 = time.time()
print 'Looping %d times took' % iters, t1 - t0, 'seconds'
print 'Result is', r
print 'Numpy result is', numpy.asarray(r)
if numpy.any([isinstance(x.op, T.Elemwise) for x in f.maker.fgraph.toposort()]):
    print 'Used the cpu'
else:
    print 'Used the gpu'





The output from this program is

$ THEANO_FLAGS=mode=FAST_RUN,device=gpu,floatX=float32 python check2.py
Using gpu device 0: GeForce GTX 580
[GpuElemwise{exp,no_inplace}(<CudaNdarrayType(float32, vector)>)]
Looping 1000 times took 0.34898686409 seconds
Result is <CudaNdarray object at 0x6a7a5f0>
Numpy result is [ 1.23178029  1.61879349  1.52278066 ...,  2.20771813  2.29967761
  1.62323296]
Used the gpu





Here we’ve shaved off about 50% of the run-time by simply not copying
the resulting array back to the host.  The object returned by each
function call is now not a NumPy array but a “CudaNdarray” which can
be converted to a NumPy ndarray by the normal NumPy casting mechanism
using something like numpy.asarray().

For even more speed you can play with the borrow flag.  See
Borrowing when Constructing Function Objects.




What Can Be Accelerated on the GPU

The performance characteristics will change as we continue to optimize our
implementations, and vary from device to device, but to give a rough idea of
what to expect right now:


	Only computations
with float32 data-type can be accelerated. Better support for float64 is expected in upcoming hardware but
float64 computations are still relatively slow (Jan 2010).

	Matrix
multiplication, convolution, and large element-wise operations can be
accelerated a lot (5-50x) when arguments are large enough to keep 30
processors busy.

	Indexing,
dimension-shuffling and  constant-time reshaping will be equally fast on GPU
as on CPU.

	Summation
over rows/columns of tensors can be a little slower on the GPU than on the CPU.

	Copying
of large quantities of data to and from a device is relatively slow, and
often cancels most of the advantage of one or two accelerated functions on
that data.  Getting GPU performance largely hinges on making data transfer to
the device pay off.






Tips for Improving Performance on GPU


	Consider
adding floatX=float32 to your .theanorc file if you plan to do a lot of
GPU work.

	Use the Theano flag allow_gc=False. See GPU Async capabilities

	Prefer
constructors like matrix, vector and scalar to dmatrix, dvector and
dscalar because the former will give you float32 variables when
floatX=float32.

	Ensure
that your output variables have a float32 dtype and not float64.  The
more float32 variables are in your graph, the more work the GPU can do for
you.

	Minimize
tranfers to the GPU device by using shared float32 variables to store
frequently-accessed data (see shared()).  When using
the GPU, float32 tensor shared variables are stored on the GPU by default to
eliminate transfer time for GPU ops using those variables.

	If you aren’t happy with the performance you see, try building your functions with
mode='ProfileMode'. This should print some timing information at program
termination. Is time being used sensibly?   If an op or Apply is
taking more time than its share, then if you know something about GPU
programming, have a look at how it’s implemented in theano.sandbox.cuda.
Check the line similar to Spent Xs(X%) in cpu op, Xs(X%) in gpu op and Xs(X%) in transfer op.
This can tell you if not enough of your graph is on the GPU or if there
is too much memory transfer.

	Use nvcc options. nvcc supports those options to speed up some
computations: -ftz=true to flush denormals values to
zeros. [https://developer.nvidia.com/content/cuda-pro-tip-flush-denormals-confidence],
–prec-div=false and –prec-sqrt=false options to speed up
division and square root operation by being less precise. You can
enable all of them with the nvcc.flags=–use_fast_math Theano
flag or you can enable them individually as in this example:
nvcc.flags=-ftz=true –prec-div=false.






GPU Async capabilities

Ever since Theano 0.6 we started to use the asynchronous capability of
GPUs. This allows us to be faster but with the possibility that some
errors may be raised later than when they should occur. This can cause
difficulties when profiling Theano apply nodes. There is a NVIDIA
driver feature to help with these issues. If you set the environment
variable CUDA_LAUNCH_BLOCKING=1 then all kernel calls will be
automatically synchronized. This reduces performance but provides good
profiling and appropriately placed error messages.

This feature interacts with Theano garbage collection of intermediate
results. To get the most of this feature, you need to disable the gc
as it inserts synchronization points in the graph. Set the Theano flag
allow_gc=False to get even faster speed! This will raise the memory
usage.




Changing the Value of Shared Variables

To change the value of a shared variable, e.g. to provide new data to processes,
use shared_variable.set_value(new_value). For a lot more detail about this,
see Understanding Memory Aliasing for Speed and Correctness.


Exercise

Consider again the logistic regression:

import numpy
import theano
import theano.tensor as T
rng = numpy.random

N = 400
feats = 784
D = (rng.randn(N, feats).astype(theano.config.floatX),
rng.randint(size=N,low=0, high=2).astype(theano.config.floatX))
training_steps = 10000

# Declare Theano symbolic variables
x = T.matrix("x")
y = T.vector("y")
w = theano.shared(rng.randn(feats).astype(theano.config.floatX), name="w")
b = theano.shared(numpy.asarray(0., dtype=theano.config.floatX), name="b")
x.tag.test_value = D[0]
y.tag.test_value = D[1]
#print "Initial model:"
#print w.get_value(), b.get_value()

# Construct Theano expression graph
p_1 = 1 / (1 + T.exp(-T.dot(x, w)-b)) # Probability of having a one
prediction = p_1 > 0.5 # The prediction that is done: 0 or 1
xent = -y*T.log(p_1) - (1-y)*T.log(1-p_1) # Cross-entropy
cost = xent.mean() + 0.01*(w**2).sum() # The cost to optimize
gw,gb = T.grad(cost, [w,b])

# Compile expressions to functions
train = theano.function(
            inputs=[x,y],
            outputs=[prediction, xent],
            updates={w:w-0.01*gw, b:b-0.01*gb},
            name = "train")
predict = theano.function(inputs=[x], outputs=prediction,
            name = "predict")

if any([x.op.__class__.__name__ in ['Gemv', 'CGemv', 'Gemm', 'CGemm'] for x in
        train.maker.fgraph.toposort()]):
    print 'Used the cpu'
elif any([x.op.__class__.__name__ in ['GpuGemm', 'GpuGemv'] for x in
          train.maker.fgraph.toposort()]):
    print 'Used the gpu'
else:
    print 'ERROR, not able to tell if theano used the cpu or the gpu'
    print train.maker.fgraph.toposort()

for i in range(training_steps):
    pred, err = train(D[0], D[1])
#print "Final model:"
#print w.get_value(), b.get_value()

print "target values for D"
print D[1]

print "prediction on D"
print predict(D[0])





Modify and execute this example to run on GPU with floatX=float32 and
time it using the command line time python file.py. (Of course, you may use some of your answer
to the exercise in section Configuration Settings and Compiling Mode.)

Is there an increase in speed from CPU to GPU?

Where does it come from? (Use ProfileMode)

What can be done to further increase the speed of the GPU version? Put your ideas to test.


Note


	Only 32 bit floats are currently supported (development is in progress).

	Shared variables with float32 dtype are by default moved to the GPU memory space.

	There is a limit of one GPU per process.

	Use the Theano flag device=gpu to require use of the GPU device.

	Use device=gpu{0, 1, ...} to specify which GPU if you have more than one.

	Apply the Theano flag floatX=float32 (through theano.config.floatX) in your code.

	Cast inputs before storing them into a shared variable.

	Circumvent the automatic cast of int32 with float32 to float64:
	Insert manual cast in your code or use [u]int{8,16}.

	Insert manual cast around the mean operator (this involves division by length, which is an int64).

	Notice that a new casting mechanism is being developed.









Solution










GpuArray Backend

If you have not done so already, you will need to install libgpuarray
as well as at least one computing toolkit.  Instructions for doing so
are provided at libgpuarray [http://deeplearning.net/software/libgpuarray/installation.html].

While all types of devices are supported if using OpenCL, for the
remainder of this section, whatever compute device you are using will
be referred to as GPU.


Warning

While it is fully our intention to support OpenCL, as of May 2014
this support is still in its infancy.  A lot of very useful ops
still do not support it because they were ported from the old
backend with minimal change.




Testing Theano with GPU

To see if your GPU is being used, cut and paste the following program
into a file and run it.

from theano import function, config, shared, tensor, sandbox
import numpy
import time

vlen = 10 * 30 * 768  # 10 x #cores x # threads per core
iters = 1000

rng = numpy.random.RandomState(22)
x = shared(numpy.asarray(rng.rand(vlen), config.floatX))
f = function([], tensor.exp(x))
print f.maker.fgraph.toposort()
t0 = time.time()
for i in xrange(iters):
    r = f()
t1 = time.time()
print 'Looping %d times took' % iters, t1 - t0, 'seconds'
print 'Result is', r
if numpy.any([isinstance(x.op, tensor.Elemwise) and
              ('Gpu' not in type(x.op).__name__)
              for x in f.maker.fgraph.toposort()]):
    print 'Used the cpu'
else:
    print 'Used the gpu'





The program just compute exp() of a bunch of random numbers.  Note
that we use the theano.shared() function to make sure that the
input x is stored on the GPU.

$ THEANO_FLAGS=device=cpu python check1.py
[Elemwise{exp,no_inplace}(<TensorType(float64, vector)>)]
Looping 1000 times took 2.6071999073 seconds
Result is [ 1.23178032  1.61879341  1.52278065 ...,  2.20771815  2.29967753
  1.62323285]
Used the cpu

$ THEANO_FLAGS=device=cuda0 python check1.py
Using device cuda0: GeForce GTX 275
[GpuElemwise{exp,no_inplace}(<GpuArray<float64>>), HostFromGpu(gpuarray)(GpuElemwise{exp,no_inplace}.0)]
Looping 1000 times took 2.28562092781 seconds
Result is [ 1.23178032  1.61879341  1.52278065 ...,  2.20771815  2.29967753
  1.62323285]
Used the gpu








Returning a Handle to Device-Allocated Data

By default functions that execute on the GPU still return a standard
numpy ndarray.  A transfer operation is inserted just before the
results are returned to ensure a consistent interface with CPU code.
This allows changing the deivce some code runs on by only replacing
the value of the device flag without touching the code.

If you don’t mind a loss of flexibility, you can ask theano to return
the GPU object directly.  The following code is modifed to do just that.

from theano import function, config, shared, tensor, sandbox
import numpy
import time

vlen = 10 * 30 * 768  # 10 x #cores x # threads per core
iters = 1000

rng = numpy.random.RandomState(22)
x = shared(numpy.asarray(rng.rand(vlen), config.floatX))
f = function([], sandbox.gpuarray.basic_ops.gpu_from_host(tensor.exp(x)))
print f.maker.fgraph.toposort()
t0 = time.time()
for i in xrange(iters):
    r = f()
t1 = time.time()
print 'Looping %d times took' % iters, t1 - t0, 'seconds'
print 'Result is', numpy.asarray(r)
if numpy.any([isinstance(x.op, tensor.Elemwise) and
              ('Gpu' not in type(x.op).__name__)
              for x in f.maker.fgraph.toposort()]):
    print 'Used the cpu'
else:
    print 'Used the gpu'





Here the theano.sandbox.gpuarray.basic.gpu_from_host() call
means “copy input to the GPU”.  However during the optimization phase,
since the result will already be on th gpu, it will be removed.  It is
used here to tell theano that we want the result on the GPU.

The output is

$ THEANO_FLAGS=device=cuda0 python check2.py
Using device cuda0: GeForce GTX 275
[GpuElemwise{exp,no_inplace}(<GpuArray<float64>>)]
Looping 1000 times took 0.455810785294 seconds
Result is [ 1.23178032  1.61879341  1.52278065 ...,  2.20771815  2.29967753
  1.62323285]
Used the gpu





While the time per call appears to be much lower than the two previous
invocations (and should indeed be lower, since we avoid a transfer)
the massive speedup we obtained is in part due to asynchronous nature
of execution on GPUs, meaning that the work isn’t completed yet, just
‘launched’.  We’ll talk about that later.

The object returned is a GpuArray from pygpu.  It mostly acts as a
numpy ndarray with some exceptions due to its data being on the GPU.
You can copy it to the host and convert it to a regular ndarray by
using usual numpy casting such as numpy.asarray().

For even more speed, you can play with the borrow flag.  See
Borrowing when Constructing Function Objects.




What Can be Accelerated on the GPU

The performance characteristics will of course vary from device to
device, and also as we refine our implementation.

This backend supports all regular theano data types (float32, float64,
int, ...) however GPU support varies and some units can’t deal with
double (float64) or small (less than 32 bits like int16) data types.
You will get an error at compile time or runtime if this is the case.

Complex support is untested and most likely completely broken.

In general, large operations like matrix multiplication, or
element-wise operations with large inputs, will be significatly
faster.




GPU Async Capabilities

By default, all operations on the GPU are run asynchronously.  This
means that they are only scheduled to run and the function returns.
This is made somewhat transparently by the underlying libgpuarray.

A forced synchronization point is introduced when doing memory
transfers between device and host. Another is introduced when
releasing active memory buffers on the GPU (active buffers are buffers
that are still in use by a kernel).

It is possible to force synchronization for a particular GpuArray by
calling its sync() method.  This is useful to get accurate timings
when doing benchmarks.

The forced synchronization points interact with the garbage collection
of the intermediate results.  To get the fastest speed possible, you
should disable the garbage collector by using the theano flag
allow_gc=False.  Be aware that this will increase memory usage
sometimes significantly.








Software for Directly Programming a GPU

Leaving aside Theano which is a meta-programmer, there are:


	CUDA: GPU programming API by NVIDIA based on extension to C (CUDA C)


	Vendor-specific

	Numeric libraries (BLAS, RNG, FFT) are maturing.





	OpenCL: multi-vendor version of CUDA


	More general, standardized.

	Fewer libraries, lesser spread.





	PyCUDA: Python bindings to CUDA driver interface allow to access Nvidia’s CUDA parallel
computation API from Python


	Convenience:

Makes it easy to do GPU meta-programming from within Python.

Abstractions to compile low-level CUDA code from Python (pycuda.driver.SourceModule).

GPU memory buffer (pycuda.gpuarray.GPUArray).

Helpful documentation.



	Completeness: Binding to all of CUDA’s driver API.



	Automatic error checking: All CUDA errors are automatically translated into Python exceptions.



	Speed: PyCUDA’s base layer is written in C++.



	Good memory management of GPU objects:

Object cleanup tied to lifetime of objects (RAII, ‘Resource Acquisition Is Initialization’).

Makes it much easier to write correct, leak- and crash-free code.

PyCUDA knows about dependencies (e.g. it won’t detach from a context before all memory
allocated in it is also freed).





(This is adapted from PyCUDA’s documentation [http://documen.tician.de/pycuda/index.html]
and Andreas Kloeckner’s website [http://mathema.tician.de/software/pycuda] on PyCUDA.)



	PyOpenCL: PyCUDA for OpenCL








Learning to Program with PyCUDA

If you already enjoy a good proficiency with the C programming language, you
may easily leverage your knowledge by learning, first, to program a GPU with the
CUDA extension to C (CUDA C) and, second, to use PyCUDA to access the CUDA
API with a Python wrapper.

The following resources will assist you in this learning process:


	CUDA API and CUDA C: Introductory
	NVIDIA’s slides [http://www.sdsc.edu/us/training/assets/docs/NVIDIA-02-BasicsOfCUDA.pdf]

	Stein’s (NYU) slides [http://www.cs.nyu.edu/manycores/cuda_many_cores.pdf]





	CUDA API and CUDA C: Advanced
	MIT IAP2009 CUDA [https://sites.google.com/site/cudaiap2009/home]
(full coverage: lectures, leading Kirk-Hwu textbook, examples, additional resources)

	Course U. of Illinois [http://courses.engr.illinois.edu/ece498/al/index.html]
(full lectures, Kirk-Hwu textbook)

	NVIDIA’s knowledge base [http://www.nvidia.com/content/cuda/cuda-developer-resources.html]
(extensive coverage, levels from introductory to advanced)

	practical issues [http://stackoverflow.com/questions/2392250/understanding-cuda-grid-dimensions-block-dimensions-and-threads-organization-s]
(on the relationship between grids, blocks and threads; see also linked and related issues on same page)

	CUDA optimisation [http://www.gris.informatik.tu-darmstadt.de/cuda-workshop/slides.html]





	PyCUDA: Introductory
	Kloeckner’s slides [http://www.gputechconf.com/gtcnew/on-demand-gtc.php?sessionTopic=&searchByKeyword=kloeckner&submit=&select=+&sessionEvent=2&sessionYear=2010&sessionFormat=3]

	Kloeckner’ website [http://mathema.tician.de/software/pycuda]





	PYCUDA: Advanced
	PyCUDA documentation website [http://documen.tician.de/pycuda/]







The following examples give a foretaste of programming a GPU with PyCUDA. Once
you feel competent enough, you may try yourself on the corresponding exercises.

Example: PyCUDA

# (from PyCUDA's documentation)
import pycuda.autoinit
import pycuda.driver as drv
import numpy

from pycuda.compiler import SourceModule
mod = SourceModule("""
__global__ void multiply_them(float *dest, float *a, float *b)
{
  const int i = threadIdx.x;
  dest[i] = a[i] * b[i];
}
""")

multiply_them = mod.get_function("multiply_them")

a = numpy.random.randn(400).astype(numpy.float32)
b = numpy.random.randn(400).astype(numpy.float32)

dest = numpy.zeros_like(a)
multiply_them(
        drv.Out(dest), drv.In(a), drv.In(b),
        block=(400,1,1), grid=(1,1))

assert numpy.allclose(dest, a*b)
print dest






Exercise

Run the preceding example.

Modify and execute to work for a matrix of shape (20, 10).

Example: Theano + PyCUDA

import numpy, theano
import theano.misc.pycuda_init
from pycuda.compiler import SourceModule
import theano.sandbox.cuda as cuda

class PyCUDADoubleOp(theano.Op):
    def __eq__(self, other):
        return type(self) == type(other)

    def __hash__(self):
        return hash(type(self))

    def __str__(self):
        return self.__class__.__name__

    def make_node(self, inp):
        inp = cuda.basic_ops.gpu_contiguous(
           cuda.basic_ops.as_cuda_ndarray_variable(inp))
        assert inp.dtype == "float32"
        return theano.Apply(self, [inp], [inp.type()])

    def make_thunk(self, node, storage_map, _, _2):
        mod = SourceModule("""
    __global__ void my_fct(float * i0, float * o0, int size) {
    int i = blockIdx.x*blockDim.x + threadIdx.x;
    if(i<size){
        o0[i] = i0[i]*2;
    }
  }""")
        pycuda_fct = mod.get_function("my_fct")
        inputs = [storage_map[v] for v in node.inputs]
        outputs = [storage_map[v] for v in node.outputs]

        def thunk():
            z = outputs[0]
            if z[0] is None or z[0].shape != inputs[0][0].shape:
                z[0] = cuda.CudaNdarray.zeros(inputs[0][0].shape)
            grid = (int(numpy.ceil(inputs[0][0].size / 512.)), 1)
            pycuda_fct(inputs[0][0], z[0], numpy.intc(inputs[0][0].size),
                       block=(512, 1, 1), grid=grid)
        return thunk





Use this code to test it:

>>> x = theano.tensor.fmatrix()
>>> f = theano.function([x], PyCUDADoubleOp()(x))
>>> xv = numpy.ones((4, 5), dtype="float32")
>>> assert numpy.allclose(f(xv), xv*2)
>>> print numpy.asarray(f(xv))








Exercise

Run the preceding example.

Modify and execute to multiply two matrices: x * y.

Modify and execute to return two outputs: x + y and x - y.

(Notice that Theano’s current elemwise fusion optimization is
only applicable to computations involving a single output. Hence, to gain
efficiency over the basic solution that is asked here, the two operations would
have to be jointly optimized explicitly in the code.)

Modify and execute to support stride (i.e. to avoid constraining the input to be C-contiguous).
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PyCUDA/CUDAMat/Gnumpy compatibility


PyCUDA

Currently, PyCUDA and Theano have different objects to store GPU
data. The two implementations do not support the same set of features.
Theano’s implementation is called CudaNdarray and supports
strides. It also only supports the float32 dtype. PyCUDA’s implementation
is called GPUArray and doesn’t support strides. However, it can deal with
all NumPy and CUDA dtypes.

We are currently working on having the same base object for both that will
also mimic Numpy. Until this is ready, here is some information on how to
use both objects in the same script.


Transfer

You can use the theano.misc.pycuda_utils module to convert GPUArray to and
from CudaNdarray. The functions to_cudandarray(x, copyif=False) and
to_gpuarray(x) return a new object that occupies the same memory space
as the original. Otherwise it raises a ValueError. Because GPUArrays don’t
support strides, if the CudaNdarray is strided, we could copy it to
have a non-strided copy. The resulting GPUArray won’t share the same
memory region. If you want this behavior, set copyif=True in
to_gpuarray.




Compiling with PyCUDA

You can use PyCUDA to compile CUDA functions that work directly on
CudaNdarrays. Here is an example from the file theano/misc/tests/test_pycuda_theano_simple.py:

import sys
import numpy
import theano
import theano.sandbox.cuda as cuda_ndarray
import theano.misc.pycuda_init
import pycuda
import pycuda.driver as drv
import pycuda.gpuarray


def test_pycuda_theano():
    """Simple example with pycuda function and Theano CudaNdarray object."""
    from pycuda.compiler import SourceModule
    mod = SourceModule("""
__global__ void multiply_them(float *dest, float *a, float *b)
{
  const int i = threadIdx.x;
  dest[i] = a[i] * b[i];
}
""")

    multiply_them = mod.get_function("multiply_them")

    a = numpy.random.randn(100).astype(numpy.float32)
    b = numpy.random.randn(100).astype(numpy.float32)

    # Test with Theano object
    ga = cuda_ndarray.CudaNdarray(a)
    gb = cuda_ndarray.CudaNdarray(b)
    dest = cuda_ndarray.CudaNdarray.zeros(a.shape)
    multiply_them(dest, ga, gb,
                  block=(400, 1, 1), grid=(1, 1))
    assert (numpy.asarray(dest) == a * b).all()








Theano Op using a PyCUDA function

You can use a GPU function compiled with PyCUDA in a Theano op:

import numpy, theano
import theano.misc.pycuda_init
from pycuda.compiler import SourceModule
import theano.sandbox.cuda as cuda

class PyCUDADoubleOp(theano.Op):
    def __eq__(self, other):
        return type(self) == type(other)
    def __hash__(self):
        return hash(type(self))
    def __str__(self):
        return self.__class__.__name__
    def make_node(self, inp):
        inp = cuda.basic_ops.gpu_contiguous(
           cuda.basic_ops.as_cuda_ndarray_variable(inp))
        assert inp.dtype == "float32"
        return theano.Apply(self, [inp], [inp.type()])
    def make_thunk(self, node, storage_map, _, _2):
        mod = SourceModule("""
    __global__ void my_fct(float * i0, float * o0, int size) {
    int i = blockIdx.x * blockDim.x + threadIdx.x;
    if(i<size){
        o0[i] = i0[i] * 2;
    }
  }""")
        pycuda_fct = mod.get_function("my_fct")
        inputs = [ storage_map[v] for v in node.inputs]
        outputs = [ storage_map[v] for v in node.outputs]
        def thunk():
            z = outputs[0]
            if z[0] is None or z[0].shape!=inputs[0][0].shape:
                z[0] = cuda.CudaNdarray.zeros(inputs[0][0].shape)
            grid = (int(numpy.ceil(inputs[0][0].size / 512.)),1)
            pycuda_fct(inputs[0][0], z[0], numpy.intc(inputs[0][0].size),
                       block=(512, 1, 1), grid=grid)
        thunk.lazy = False
        return thunk










CUDAMat

There are functions for conversion between CUDAMat objects and Theano’s CudaNdArray objects.
They obey the same principles as Theano’s PyCUDA functions and can be found in
theano.misc.cudamat_utils.py.

WARNING: There is a peculiar problem associated with stride/shape with those converters.
In order to work, the test needs a transpose and reshape...




Gnumpy

There are conversion functions between Gnumpy garray objects and Theano CudaNdArray objects.
They are also similar to Theano’s PyCUDA functions and can be found in theano.misc.gnumpy_utils.py.
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Understanding Memory Aliasing for Speed and Correctness

The aggressive reuse of memory is one of the ways through which Theano makes code fast, and
it is important for the correctness and speed of your program that you understand
how Theano might alias buffers.

This section describes the principles based on which Theano handles memory, and explains
when you might want to alter the default behaviour of some functions and
methods for faster performance.


The Memory Model: Two Spaces

There are some simple principles that guide Theano’s handling of memory.  The
main idea is that there is a pool of memory managed by Theano, and Theano tracks
changes to values in that pool.


	Theano manages its own memory space, which typically does not overlap with
the memory of normal Python variables that non-Theano code creates.

	Theano functions only modify buffers that are in Theano’s memory space.

	Theano’s memory space includes the buffers allocated to store shared
variables and the temporaries used to evaluate functions.

	Physically, Theano’s memory space may be spread across the host, a GPU
device(s), and in the future may even include objects on a remote machine.

	The memory allocated for a shared variable buffer is unique: it is never
aliased to another shared variable.

	Theano’s managed memory is constant while Theano functions are not running
and Theano’s library code is not running.

	The default behaviour of a function is to return user-space values for
outputs, and to expect user-space values for inputs.



The distinction between Theano-managed memory and user-managed memory can be
broken down by some Theano functions (e.g. shared, get_value and the
constructors for In and Out) by using a borrow=True flag.
This can make those methods faster (by avoiding copy operations) at the expense
of risking subtle bugs in the overall program (by aliasing memory).

The rest of this section is aimed at helping you to understand when it is safe
to use the borrow=True argument and reap the benefits of faster code.




Borrowing when Creating Shared Variables

A borrow argument can be provided to the shared-variable constructor.

import numpy, theano
np_array = numpy.ones(2, dtype='float32')

s_default = theano.shared(np_array)
s_false   = theano.shared(np_array, borrow=False)
s_true    = theano.shared(np_array, borrow=True)





By default (s_default) and when explicitly setting borrow=False, the
shared variable we construct gets a [deep] copy of np_array.  So changes we
subsequently make to np_array have no effect on our shared variable.

np_array += 1 # now it is an array of 2.0 s

s_default.get_value()  # -> array([1.0, 1.0])
s_false.get_value()    # -> array([1.0, 1.0])
s_true.get_value()     # -> array([2.0, 2.0])





If we are running this with the CPU as the device,
then changes we make to np_array right away will show up in
s_true.get_value()
because NumPy arrays are mutable, and s_true is using the np_array
object as it’s internal buffer.

However, this aliasing of np_array and s_true is not guaranteed to occur,
and may occur only temporarily even if it occurs at all.
It is not guaranteed to occur because if Theano is using a GPU device, then the
borrow flag has no effect. It may occur only temporarily because
if we call a Theano function that updates the value of s_true the aliasing
relationship may or may not be broken (the function is allowed to
update the shared variable by modifying its buffer, which will preserve
the aliasing, or by changing which buffer the variable points to, which
will terminate the aliasing).

Take home message:

It is a safe practice (and a good idea) to use borrow=True in a shared
variable constructor when the shared variable stands for a large object (in
terms of memory footprint) and you do not want to create copies of it in
memory.

It is not a reliable technique to use borrow=True to modify shared variables
through side-effect, because with some devices (e.g. GPU devices) this technique will
not work.




Borrowing when Accessing Value of Shared Variables


Retrieving

A borrow argument can also be used to control how a shared variable’s value is
retrieved.

s = theano.shared(np_array)

v_false = s.get_value(borrow=False) # N.B. borrow default is False
v_true = s.get_value(borrow=True)





When borrow=False is passed to get_value, it means that the return value
may not be aliased to any part of Theano’s internal memory.
When borrow=True is passed to get_value, it means that the return value
might be aliased to some of Theano’s internal memory.
But both of these calls might create copies of the internal memory.

The reason that borrow=True might still make a copy is that the internal
representation of a shared variable might not be what you expect.  When you
create a shared variable by passing a NumPy array for example, then get_value()
must return a NumPy array too.  That’s how Theano can make the GPU use
transparent.  But when you are using a GPU (or in the future perhaps a remote machine),
then the numpy.ndarray is not the internal representation of your data.
If you really want Theano to return its internal representation and never copy it
then you should use the return_internal_type=True argument to
get_value.  It will never cast the internal object (always return in
constant time), but might return various datatypes depending on contextual
factors (e.g. the compute device, the dtype of the NumPy array).

v_internal = s.get_value(borrow=True, return_internal_type=True)





It is possible to use borrow=False in conjunction with
return_internal_type=True, which will return a deep copy of the internal object.
This is primarily for internal debugging, not for typical use.

For the transparent use of different type of optimization Theano can make,
there is the policy that get_value() always return by default the same object type
it received when the shared variable was created. So if you created manually data on
the gpu and create a shared variable on the gpu with this data, get_value will always
return gpu data even when return_internal_type=False.

Take home message:

It is safe (and sometimes much faster) to use get_value(borrow=True) when
your code does not modify the return value.  Do not use this to modify a ``shared``
variable by side-effect because it will make your code device-dependent.
Modification of GPU variables through this sort of side-effect is impossible.




Assigning

Shared variables also have a set_value method that can accept an optional
borrow=True argument. The semantics are similar to those of creating a new
shared variable - borrow=False is the default and borrow=True means
that Theano may reuse the buffer you provide as the internal storage for the variable.

A standard pattern for manually updating the value of a shared variable is as
follows:

s.set_value(
    some_inplace_fn(s.get_value(borrow=True)),
    borrow=True)





This pattern works regardless of the computing device, and when the latter
makes it possible to expose Theano’s internal variables without a copy, then it
proceeds as fast as an in-place update.

When shared variables are allocated on the GPU, the transfers to and from the GPU device memory can
be costly.  Here are a few tips to ensure fast and efficient use of GPU memory and bandwidth:


	Prior to Theano 0.3.1, set_value did not work in-place on the GPU. This meant that, sometimes,
GPU memory for the new value would be allocated before the old memory was released. If you’re
running near the limits of GPU memory, this could cause you to run out of GPU memory
unnecessarily.

Solution: update to a newer version of Theano.



	If you are going to swap several chunks of data in and out of a shared variable repeatedly,
you will want to reuse the memory that you allocated the first time if possible - it is both
faster and more memory efficient.

Solution: upgrade to a recent version of Theano (>0.3.0) and consider padding your source
data to make sure that every chunk is the same size.



	It is also worth mentioning that, current GPU copying routines support only contiguous memory.
So Theano must make the value you provide C-contiguous prior to copying it.
This can require an extra copy of the data on the host.

Solution: make sure that the value
you assign to a CudaNdarraySharedVariable is already  C-contiguous.





(Further information on the current implementation of the GPU version of set_value() can be found
here: sandbox.cuda.var –  The Variables for Cuda-allocated arrays)






Borrowing when Constructing Function Objects

A borrow argument can also be provided to the In and Out objects
that control how theano.function handles its argument[s] and return value[s].

import theano, theano.tensor

x = theano.tensor.matrix()
y = 2 * x
f = theano.function([theano.In(x, borrow=True)], theano.Out(y, borrow=True))





Borrowing an input means that Theano will treat the argument you provide as if
it were part of Theano’s pool of temporaries.  Consequently, your input
may be reused as a buffer (and overwritten!) during the computation of other variables in the
course of evaluating that function (e.g. f).

Borrowing an output means that Theano will not insist on allocating a fresh
output buffer every time you call the function.  It will possibly reuse the same one as
on a previous call, and overwrite the old content.  Consequently, it may overwrite
old return values through side-effect.
Those return values may also be overwritten in
the course of evaluating another compiled function (for example, the output
may be aliased to a shared variable).  So be careful to use a borrowed return
value right away before calling any more Theano functions.
The default is of course to not borrow internal results.

It is also possible to pass a return_internal_type=True flag to the Out
variable which has the same interpretation as the return_internal_type flag
to the shared variable’s get_value function.  Unlike get_value(), the
combination of return_internal_type=True and borrow=True arguments to
Out() are not guaranteed to avoid copying an output value.  They are just
hints that give more flexibility to the compilation and optimization of the
graph.

For GPU graphs, this borrowing can have a major speed impact.  See the following code:

from theano import function, config, shared, sandbox, tensor, Out
import numpy
import time

vlen = 10 * 30 * 768  # 10 x # cores x # threads per core
iters = 1000

rng = numpy.random.RandomState(22)
x = shared(numpy.asarray(rng.rand(vlen), config.floatX))
f1 = function([], sandbox.cuda.basic_ops.gpu_from_host(tensor.exp(x)))
f2 = function([],
              Out(sandbox.cuda.basic_ops.gpu_from_host(tensor.exp(x)),
                  borrow=True))
t0 = time.time()
for i in xrange(iters):
    r = f1()
t1 = time.time()
no_borrow = t1 - t0
t0 = time.time()
for i in xrange(iters):
    r = f2()
t1 = time.time()
print 'Looping', iters, 'times took', no_borrow, 'seconds without borrow',
print 'and', t1 - t0, 'seconds with borrow.'
if numpy.any([isinstance(x.op, tensor.Elemwise) and
              ('Gpu' not in type(x.op).__name__)
              for x in f1.maker.fgraph.toposort()]):
    print 'Used the cpu'
else:
    print 'Used the gpu'





Which produces this output:

$ THEANO_FLAGS=device=gpu0,floatX=float32 python test1.py
Using gpu device 0: GeForce GTX 275
Looping 1000 times took 0.368273973465 seconds without borrow and 0.0240728855133 seconds with borrow.
Used the gpu





Take home message:

When an input x to a function is not needed after the function
returns and you would like to make it available to Theano as
additional workspace, then consider marking it with In(x,
borrow=True).  It may make the function faster and reduce its memory
requirement.  When a return value y is large (in terms of memory
footprint), and you only need to read from it once, right away when
it’s returned, then consider marking it with an Out(y,
borrow=True).
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How Shape Information is Handled by Theano

It is not possible to strictly enforce the shape of a Theano variable when
building a graph since the particular value provided at run-time for a parameter of a
Theano function may condition the shape of the Theano variables in its graph.

Currently, information regarding shape is used in two ways in Theano:


	To generate faster C code for the 2d convolution on the CPU and the GPU,
when the exact output shape is known in advance.



	To remove computations in the graph when we only want to know the
shape, but not the actual value of a variable. This is done with the
Op.infer_shape [http://deeplearning.net/software/theano/extending/cop.html#Op.infer_shape]
method.

Example:

import theano
x = theano.tensor.matrix('x')
f = theano.function([x], (x ** 2).shape)
theano.printing.debugprint(f)
#MakeVector [@43860304] ''   2
# |Shape_i{0} [@43424912] ''   1
# | |x [@43423568]
# |Shape_i{1} [@43797968] ''   0
# | |x [@43423568]









The output of this compiled function does not contain any multiplication
or power. Theano has removed them to compute directly the shape of the
output.


Shape Inference Problem

Theano propagates information about shape in the graph. Sometimes this
can lead to errors. Consider this example:

import numpy
import theano
x = theano.tensor.matrix('x')
y = theano.tensor.matrix('y')
z = theano.tensor.join(0, x, y)
xv = numpy.random.rand(5, 4)
yv = numpy.random.rand(3, 3)

f = theano.function([x,y], z.shape)
theano.printing.debugprint(f)
#MakeVector [@23910032] ''   4
# |Elemwise{Add{output_types_preference=transfer_type{0}}}[(0, 0)] [@24055120] ''   3
# | |Shape_i{0} [@23154000] ''   1
# | | |x [@23151760]
# | |Shape_i{0} [@23593040] ''   2
# | | |y [@23151888]
# |Shape_i{1} [@23531152] ''   0
# | |x [@23151760]

#MakeVector [@56338064] ''   4
# |Elemwise{Add{output_types_preference=transfer_type{0}}}[(0, 0)] [@56483152] ''   3
# | |Shape_i{0} [@55586128] ''   1
# | | |<TensorType(float64, matrix)> [@55583888]
# | |Shape_i{0} [@56021072] ''   2
# | | |<TensorType(float64, matrix)> [@55584016]
# |Shape_i{1} [@55959184] ''   0
# | |<TensorType(float64, matrix)> [@55583888]

print f(xv,yv)# DOES NOT RAISE AN ERROR AS SHOULD BE.
#[8,4]

f = theano.function([x,y], z)# Do not take the shape.
theano.printing.debugprint(f)
#Join [@44540496] ''   0
# |0 [@44540432]
# |x [@44540240]
# |y [@44540304]

f(xv,yv)
# Raises a dimensions mismatch error.





As you can see, when asking only for the shape of some computation (join in the
example), an inferred shape is computed directly, without executing
the computation itself (there is no join in the first output or debugprint).

This makes the computation of the shape faster, but it can also hide errors. In
this example, the computation of the shape of the output of join is done only
based on the first input Theano variable, which leads to an error.

This might happen with other ops such as elemwise and dot, for example.
Indeed, to perform some optimizations (for speed or stability, for instance),
Theano assumes that the computation is correct and consistent
in the first place, as it does here.

You can detect those problems by running the code without this
optimization, using the Theano flag
optimizer_excluding=local_shape_to_shape_i. You can also obtain the
same effect by running in the modes FAST_COMPILE (it will not apply this
optimization, nor most other optimizations) or DebugMode (it will test
before and after all optimizations (much slower)).




Specifing Exact Shape

Currently, specifying a shape is not as easy and flexible as we wish and we plan some
upgrade.  Here is the current state of what can be done:


	You can pass the shape info directly to the ConvOp created
when calling conv2d. You simply set the parameters image_shape
and filter_shape inside the call. They must be tuples of 4
elements. For example:



theano.tensor.nnet.conv2d(..., image_shape=(7, 3, 5, 5), filter_shape=(2, 3, 4, 4))






	You can use the SpecifyShape op to add shape information anywhere in the
graph. This allows to perform some optimizations. In the following example,
this makes it possible to precompute the Theano function to a constant.



import theano
x = theano.tensor.matrix()
x_specify_shape = theano.tensor.specify_shape(x, (2, 2))
f = theano.function([x], (x_specify_shape ** 2).shape)
theano.printing.debugprint(f)
# [2 2] [@72791376]








Future Plans


The parameter “constant shape” will be added to theano.shared(). This is probably
the most frequent occurrence with shared variables. It will make the code
simpler and will make it possible to check that the shape does not change when
updating the shared variable.
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Debugging Theano: FAQ and Troubleshooting

There are many kinds of bugs that might come up in a computer program.
This page is structured as a FAQ.  It provides recipes to tackle common
problems, and introduces some of the tools that we use to find problems in our
own Theano code, and even (it happens) in Theano’s internals, in
Using DebugMode.


Isolating the Problem/Testing Theano Compiler

You can run your Theano function in a DebugMode.
This tests the Theano optimizations and helps to find where NaN, inf and other problems come from.




Interpreting Error Messages

Even in its default configuration, Theano tries to display useful error
messages. Consider the following faulty code.

import numpy as np
import theano
import theano.tensor as T

x = T.vector()
y = T.vector()
z = x + x
z = z + y
f = theano.function([x, y], z)
f(np.ones((2,)), np.ones((3,)))





Running the code above we see:

Traceback (most recent call last):
  File "test0.py", line 10, in <module>
    f(np.ones((2,)), np.ones((3,)))
  File "/PATH_TO_THEANO/theano/compile/function_module.py", line 605, in __call__
    self.fn.thunks[self.fn.position_of_error])
  File "/PATH_TO_THEANO/theano/compile/function_module.py", line 595, in __call__
    outputs = self.fn()
ValueError: Input dimension mis-match. (input[0].shape[0] = 3, input[1].shape[0] = 2)
Apply node that caused the error: Elemwise{add,no_inplace}(<TensorType(float64, vector)>, <TensorType(float64, vector)>, <TensorType(float64, vector)>)
Inputs types: [TensorType(float64, vector), TensorType(float64, vector), TensorType(float64, vector)]
Inputs shapes: [(3,), (2,), (2,)]
Inputs strides: [(8,), (8,), (8,)]
Inputs scalar values: ['not scalar', 'not scalar', 'not scalar']

HINT: Re-running with most Theano optimization disabled could give you a back-traces when this node was created. This can be done with by setting the Theano flags 'optimizer=fast_compile'. If that does not work, Theano optimization can be disabled with 'optimizer=None'.
HINT: Use the Theano flag 'exception_verbosity=high' for a debugprint of this apply node.





Arguably the most useful information is approximately half-way through
the error message, where the kind of error is displayed along with its
cause (ValueError: Input dimension mis-match. (input[0].shape[0] = 3,
input[1].shape[0] = 2).
Below it, some other information is given, such as the apply node that
caused the error, as well as the input types, shapes, strides and
scalar values.

The two hints can also be helpful when debugging. Using the theano flag
optimizer=fast_compile or optimizer=None can often tell you
the faulty line, while exception_verbosity=high will display a
debugprint of the apply node. Using these hints, the end of the error
message becomes :

Backtrace when the node is created:
  File "test0.py", line 8, in <module>
    z = z + y

Debugprint of the apply node:
Elemwise{add,no_inplace} [@A] <TensorType(float64, vector)> ''
 |Elemwise{add,no_inplace} [@B] <TensorType(float64, vector)> ''
 | |<TensorType(float64, vector)> [@C] <TensorType(float64, vector)>
 | |<TensorType(float64, vector)> [@C] <TensorType(float64, vector)>
 |<TensorType(float64, vector)> [@D] <TensorType(float64, vector)>





We can here see that the error can be traced back to the line z = z + y.
For this example, using optimizer=fast_compile worked. If it did not,
you could set optimizer=None or use test values.




Using Test Values

As of v.0.4.0, Theano has a new mechanism by which graphs are executed
on-the-fly, before a theano.function is ever compiled. Since optimizations
haven’t been applied at this stage, it is easier for the user to locate the
source of some bug. This functionality is enabled through the config flag
theano.config.compute_test_value. Its use is best shown through the
following example. Here, we use exception_verbosity=high and
optimizer=fast_compile, which would not tell you the line at fault.
optimizer=None would and it could therefore be used instead of test values.

import numpy
import theano
import theano.tensor as T

# compute_test_value is 'off' by default, meaning this feature is inactive
theano.config.compute_test_value = 'off' # Use 'warn' to activate this feature

# configure shared variables
W1val = numpy.random.rand(2, 10, 10).astype(theano.config.floatX)
W1 = theano.shared(W1val, 'W1')
W2val = numpy.random.rand(15, 20).astype(theano.config.floatX)
W2 = theano.shared(W2val, 'W2')

# input which will be of shape (5,10)
x  = T.matrix('x')
# provide Theano with a default test-value
#x.tag.test_value = numpy.random.rand(5, 10)

# transform the shared variable in some way. Theano does not
# know off hand that the matrix func_of_W1 has shape (20, 10)
func_of_W1 = W1.dimshuffle(2, 0, 1).flatten(2).T

# source of error: dot product of 5x10 with 20x10
h1 = T.dot(x, func_of_W1)

# do more stuff
h2 = T.dot(h1, W2.T)

# compile and call the actual function
f = theano.function([x], h2)
f(numpy.random.rand(5, 10))





Running the above code generates the following error message:

Traceback (most recent call last):
  File "test1.py", line 31, in <module>
    f(numpy.random.rand(5, 10))
  File "PATH_TO_THEANO/theano/compile/function_module.py", line 605, in __call__
    self.fn.thunks[self.fn.position_of_error])
  File "PATH_TO_THEANO/theano/compile/function_module.py", line 595, in __call__
    outputs = self.fn()
ValueError: Shape mismatch: x has 10 cols (and 5 rows) but y has 20 rows (and 10 cols)
Apply node that caused the error: Dot22(x, DimShuffle{1,0}.0)
Inputs types: [TensorType(float64, matrix), TensorType(float64, matrix)]
Inputs shapes: [(5, 10), (20, 10)]
Inputs strides: [(80, 8), (8, 160)]
Inputs scalar values: ['not scalar', 'not scalar']

Debugprint of the apply node:
Dot22 [@A] <TensorType(float64, matrix)> ''
 |x [@B] <TensorType(float64, matrix)>
 |DimShuffle{1,0} [@C] <TensorType(float64, matrix)> ''
   |Flatten{2} [@D] <TensorType(float64, matrix)> ''
     |DimShuffle{2,0,1} [@E] <TensorType(float64, 3D)> ''
       |W1 [@F] <TensorType(float64, 3D)>

HINT: Re-running with most Theano optimization disabled could give you a back-traces when this node was created. This can be done with by setting the Theano flags 'optimizer=fast_compile'. If that does not work, Theano optimization can be disabled with 'optimizer=None'.





If the above is not informative enough, by instrumenting the code ever
so slightly, we can get Theano to reveal the exact source of the error.

# enable on-the-fly graph computations
theano.config.compute_test_value = 'warn'

...

# input which will be of shape (5, 10)
x  = T.matrix('x')
# provide Theano with a default test-value
x.tag.test_value = numpy.random.rand(5, 10)





In the above, we are tagging the symbolic matrix x with a special test
value. This allows Theano to evaluate symbolic expressions on-the-fly (by
calling the perform method of each op), as they are being defined. Sources
of error can thus be identified with much more precision and much earlier in
the compilation pipeline. For example, running the above code yields the
following error message, which properly identifies line 24 as the culprit.

Traceback (most recent call last):
  File "test2.py", line 24, in <module>
    h1 = T.dot(x, func_of_W1)
  File "PATH_TO_THEANO/theano/tensor/basic.py", line 4734, in dot
    return _dot(a, b)
  File "PATH_TO_THEANO/theano/gof/op.py", line 545, in __call__
    required = thunk()
  File "PATH_TO_THEANO/theano/gof/op.py", line 752, in rval
    r = p(n, [x[0] for x in i], o)
  File "PATH_TO_THEANO/theano/tensor/basic.py", line 4554, in perform
    z[0] = numpy.asarray(numpy.dot(x, y))
ValueError: matrices are not aligned





The compute_test_value mechanism works as follows:


	Theano constants and shared variables are used as is. No need to instrument them.

	A Theano variable (i.e. dmatrix, vector, etc.) should be
given a special test value through the attribute tag.test_value.

	Theano automatically instruments intermediate results. As such, any quantity
derived from x will be given a tag.test_value automatically.



compute_test_value can take the following values:


	off: Default behavior. This debugging mechanism is inactive.

	raise: Compute test values on the fly. Any variable for which a test
value is required, but not provided by the user, is treated as an error. An
exception is raised accordingly.

	warn: Idem, but a warning is issued instead of an Exception.

	ignore: Silently ignore the computation of intermediate test values, if a
variable is missing a test value.




Note

This feature is currently incompatible with Scan and also with ops
which do not implement a perform method.






“How do I Print an Intermediate Value in a Function?”

Theano provides a ‘Print’ op to do this.

x = theano.tensor.dvector('x')

x_printed = theano.printing.Print('this is a very important value')(x)

f = theano.function([x], x * 5)
f_with_print = theano.function([x], x_printed * 5)

#this runs the graph without any printing
assert numpy.all( f([1, 2, 3]) == [5, 10, 15])

#this runs the graph with the message, and value printed
assert numpy.all( f_with_print([1, 2, 3]) == [5, 10, 15])





Since Theano runs your program in a topological order, you won’t have precise
control over the order in which multiple Print() ops are evaluted.  For a more
precise inspection of what’s being computed where, when, and how, see the discussion
“How do I Step through a Compiled Function?”.


Warning

Using this Print Theano Op can prevent some Theano
optimization from being applied. This can also happen with
stability optimization. So if you use this Print and have nan, try
to remove them to know if this is the cause or not.






“How do I Print a Graph?” (before or after compilation)

Theano provides two functions (theano.pp() and
theano.printing.debugprint()) to print a graph to the terminal before or after
compilation.  These two functions print expression graphs in different ways:
pp() is more compact and math-like, debugprint() is more verbose.
Theano also provides theano.printing.pydotprint() that creates a png image of the function.

You can read about them in printing – Graph Printing and Symbolic Print Statement.




“The Function I Compiled is Too Slow, what’s up?”

First, make sure you’re running in FAST_RUN mode. Even though
FAST_RUN is the default mode, insist by passing mode='FAST_RUN'
to theano.function (or theano.make) or by setting config.mode
to FAST_RUN.

Second, try the Theano ProfileMode.  This will tell you which
Apply nodes, and which ops are eating up your CPU cycles.

Tips:


	Use the flags floatX=float32 to require type float32 instead of float64;
Use the Theano constructors matrix(),vector(),... instead of dmatrix(), dvector(),...
since they respectively involve the default types float32 and float64.

	Check in the profile mode that there is no Dot op in the post-compilation
graph while you are multiplying two matrices of the same type. Dot should be
optimized to dot22 when the inputs are matrices and of the same type. This can
still happen when using floatX=float32 when one of the inputs of the graph is
of type float64.






“How do I Step through a Compiled Function?”

You can use MonitorMode to inspect the inputs and outputs of each
node being executed when the function is called. The code snipped below
shows how to print all inputs and outputs:

import theano

def inspect_inputs(i, node, fn):
    print i, node, "input(s) value(s):", [input[0] for input in fn.inputs],

def inspect_outputs(i, node, fn):
    print "output(s) value(s):", [output[0] for output in fn.outputs]

x = theano.tensor.dscalar('x')
f = theano.function([x], [5 * x],
                    mode=theano.compile.MonitorMode(
                        pre_func=inspect_inputs,
                        post_func=inspect_outputs))
f(3)

# The code will print the following:
#   0 Elemwise{mul,no_inplace}(TensorConstant{5.0}, x) input(s) value(s): [array(5.0), array(3.0)] output(s) value(s): [array(15.0)]





When using these inspect_inputs and inspect_outputs functions
with MonitorMode, you should see [potentially a lot of] printed output.
Every Apply node will be printed out,
along with its position in the graph, the arguments to the functions perform or
c_code and the output it computed.
Admittedly, this may be a huge amount of
output to read through if you are using big tensors... but you can choose to
add logic that would, for instance, print
something out only if a certain kind of op were used, at a certain program
position, or only if a particular value showed up in one of the inputs or outputs.
A typical example is to detect when NaN values are added into computations, which
can be achieved as follows:

import numpy

import theano

# This is the current suggested detect_nan implementation to
# show you how it work.  That way, you can modify it for your
# need.  If you want exactly this method, you can use
# ``theano.compile.monitormode.detect_nan`` that will always
# contain the current suggested version.

def detect_nan(i, node, fn):
    for output in fn.outputs:
        if (not isinstance(output[0], numpy.random.RandomState) and
            numpy.isnan(output[0]).any()):
            print '*** NaN detected ***'
            theano.printing.debugprint(node)
            print 'Inputs : %s' % [input[0] for input in fn.inputs]
            print 'Outputs: %s' % [output[0] for output in fn.outputs]
            break

x = theano.tensor.dscalar('x')
f = theano.function([x], [theano.tensor.log(x) * x],
                    mode=theano.compile.MonitorMode(
                        post_func=detect_nan))
f(0)  # log(0) * 0 = -inf * 0 = NaN

# The code above will print:
#   *** NaN detected ***
#   Elemwise{Composite{[mul(log(i0), i0)]}} [@A] ''
#    |x [@B]
#   Inputs : [array(0.0)]
#   Outputs: [array(nan)]





To help understand what is happening in your graph, you can
disable the local_elemwise_fusion and all inplace
optimizations. The first is a speed optimization that merges elemwise
operations together. This makes it harder to know which particular
elemwise causes the problem. The second optimization makes some ops’
outputs overwrite their inputs. So, if an op creates a bad output, you
will not be able to see the input that was overwriten in the post_func
function. To disable those optimizations (with a Theano version after
0.6rc3), define the MonitorMode like this:

mode = theano.compile.MonitorMode(post_func=detect_nan).excluding(
    'local_elemwise_fusion', 'inplace)
 f = theano.function([x], [theano.tensor.log(x) * x],
                     mode=mode)






Note

The Theano flags optimizer_including, optimizer_excluding
and optimizer_requiring aren’t used by the MonitorMode, they
are used only by the default mode. You can’t use the default
mode with MonitorMode, as you need to define what you monitor.



To be sure all inputs of the node are available during the call to
post_func, you must also disable the garbage collector. Otherwise,
the execution of the node can garbage collect its inputs that aren’t
needed anymore by the Theano function. This can be done with the Theano
flag:

allow_gc=False








How to Use pdb

In the majority of cases, you won’t be executing from the interactive shell
but from a set of Python scripts. In such cases, the use of the Python
debugger can come in handy, especially as your models become more complex.
Intermediate results don’t necessarily have a clear name and you can get
exceptions which are hard to decipher, due to the “compiled” nature of the
functions.

Consider this example script (“ex.py”):

import theano
import numpy
import theano.tensor as T

a = T.dmatrix('a')
b = T.dmatrix('b')

f = theano.function([a, b], [a * b])

# matrices chosen so dimensions are unsuitable for multiplication
mat1 = numpy.arange(12).reshape((3, 4))
mat2 = numpy.arange(25).reshape((5, 5))

f(mat1, mat2)





This is actually so simple the debugging could be done easily, but it’s for
illustrative purposes. As the matrices can’t be multiplied element-wise
(unsuitable shapes), we get the following exception:

File "ex.py", line 14, in <module>
  f(mat1, mat2)
File "/u/username/Theano/theano/compile/function_module.py", line 451, in __call__
File "/u/username/Theano/theano/gof/link.py", line 271, in streamline_default_f
File "/u/username/Theano/theano/gof/link.py", line 267, in streamline_default_f
File "/u/username/Theano/theano/gof/cc.py", line 1049, in execute ValueError: ('Input dimension mis-match. (input[0].shape[0] = 3, input[1].shape[0] = 5)', Elemwise{mul,no_inplace}(a, b), Elemwise{mul,no_inplace}(a, b))





The call stack contains some useful information to trace back the source
of the error. There’s the script where the compiled function was called –
but if you’re using (improperly parameterized) prebuilt modules, the error
might originate from ops in these modules, not this script. The last line
tells us about the op that caused the exception. In this case it’s a “mul”
involving variables with names “a” and “b”. But suppose we instead had an
intermediate result to which we hadn’t given a name.

After learning a few things about the graph structure in Theano, we can use
the Python debugger to explore the graph, and then we can get runtime
information about the error. Matrix dimensions, especially, are useful to
pinpoint the source of the error. In the printout, there are also 2 of the 4
dimensions of the matrices involved, but for the sake of example say we’d
need the other dimensions to pinpoint the error. First, we re-launch with
the debugger module and run the program with “c”:

python -m pdb ex.py
> /u/username/experiments/doctmp1/ex.py(1)<module>()
-> import theano
(Pdb) c





Then we get back the above error printout, but the interpreter breaks in
that state. Useful commands here are


	“up” and “down” (to move up and down the call stack),

	“l” (to print code around the line in the current stack position),

	“p variable_name” (to print the string representation of ‘variable_name’),

	“p dir(object_name)”, using the Python dir() function to print the list of an object’s members



Here, for example, I do “up”, and a simple “l” shows me there’s a local
variable “node”. This is the “node” from the computation graph, so by
following the “node.inputs”, “node.owner” and “node.outputs” links I can
explore around the graph.

That graph is purely symbolic (no data, just symbols to manipulate it
abstractly). To get information about the actual parameters, you explore the
“thunk” objects, which bind the storage for the inputs (and outputs) with
the function itself (a “thunk” is a concept related to closures). Here, to
get the current node’s first input’s shape, you’d therefore do “p
thunk.inputs[0][0].shape”, which prints out “(3, 4)”.




Dumping a Function to help debug

If you are reading this, there is high chance that you emailed our
mailing list and we asked you to read this section. This section
explain how to dump all the parameter passed to
theano.function(). This is useful to help us reproduce a problem
during compilation and it don’t request you to make a self contained
example.

For this to work, we need to be able to import the code for all Op in
the graph. So if you create your own Op, we will need this
code. Otherwise, we won’t be able to unpickle it. We already have all
the Ops from Theano and Pylearn2.

# Replace this line:
theano.function(...)
# with
theano.function_dump(filename, ...)
# Where filename is a string to a file that we will write to.





Then send us filename.
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Profiling Theano function


Note

This method replace the old ProfileMode. Do not use ProfileMode
anymore.



Besides checking for errors, another important task is to profile your
code. For this, you can use Theano flags and/or parameters which are
to be passed as an argument to theano.function.

The simplest way to profile Theano functions is to use the Theano
flags described below. When the process exits, they will cause the
information to be printed on stdout.

Using the ProfileMode is a three-step process.

Enabling the profiler is pretty easy. Just use the Theano flag
config.profile.

To enable the memory profiler use the Theano flag:
config.profile_memory in addition to config.profile.

To enable the profiling of Theano optimization phase, use the Theano
flag: config.profile_optimizer in addition to
config.profile.

You can use the Theano flags profiling.n_apply,
profiling.n_ops and profiling.min_memory_size to
modify the quantify of information printed.

The profiler will output one profile per Theano function and profile
that is the sum of the printed profile. Each profile contains 4
sections: global info, class info, Ops info and Apply node info.

In the global section, the “Message” is the name of the Theano
function. theano.function() has an optional parameter name that
defaults to None. Change it to something else to help you profile many
Theano functions. In that section, we also see the number of time the
function was called (1) and the total time spent in all those
calls. The time spent in Function.fn.__call__ and in thunks is useful
to help understand Theano overhead.

Also, we see the time spent in the two parts of the compilation
process: optimization(modify the graph to make it more stable/faster)
and the linking (compile c code and make the Python callable returned
by function).

The class, Ops and Apply nodes sections are the same information:
information about the Apply node that ran. The Ops section takes the
information from the Apply section and merge the Apply nodes that have
exactly the same op. If two Apply nodes in the graph have two Ops that
compare equal, they will be merged. Some Ops like Elemwise, will not
compare equal, if their parameters differ (the scalar being
executed). So the class section will merge more Apply nodes then the
Ops section.

Here is an example output when we disable some Theano optimizations to
give you a better idea of the difference between sections. With all
optimizations enabled, there would be only one op left in the graph.


Note

To profile the peak memory usage on the GPU you need to do:

* In the file theano/sandbox/cuda/cuda_ndarray.cu, set the macro
  COMPUTE_GPU_MEM_USED to 1.
* Then call theano.sandbox.cuda.theano_allocated()
  It return a tuple with two ints. The first is the current GPU
  memory allocated by Theano. The second is the peak  GPU memory
  that was allocated by Theano.





Do not always enable this, as this slowdown memory allocation and
free. As this slowdown the computation, this will affect speed
profiling. So don’t use both at the same time.



to run the example:


THEANO_FLAGS=optimizer_excluding=fusion:inplace,profile=True python doc/tutorial/profiling_example.py


The output:

Function profiling
==================
  Message: None
  Time in 1 calls to Function.__call__: 5.698204e-05s
  Time in Function.fn.__call__: 1.192093e-05s (20.921%)
  Time in thunks: 6.198883e-06s (10.879%)
  Total compile time: 3.642474e+00s
    Theano Optimizer time: 7.326508e-02s
       Theano validate time: 3.712177e-04s
    Theano Linker time (includes C, CUDA code generation/compiling): 9.584920e-01s

Class
---
<% time> <sum %> <apply time> <time per call> <type> <#call> <#apply> <Class name>
  100.0%   100.0%       0.000s       2.07e-06s     C        3        3   <class 'theano.tensor.elemwise.Elemwise'>
   ... (remaining 0 Classes account for   0.00%(0.00s) of the runtime)

Ops
---
<% time> <sum %> <apply time> <time per call> <type> <#call> <#apply> <Op name>
  65.4%    65.4%       0.000s       2.03e-06s     C        2        2   Elemwise{add,no_inplace}
  34.6%   100.0%       0.000s       2.15e-06s     C        1        1   Elemwise{mul,no_inplace}
   ... (remaining 0 Ops account for   0.00%(0.00s) of the runtime)

Apply
------
<% time> <sum %> <apply time> <time per call> <#call> <id> <Apply name>
  50.0%    50.0%       0.000s       3.10e-06s      1     0   Elemwise{add,no_inplace}(x, y)
  34.6%    84.6%       0.000s       2.15e-06s      1     2   Elemwise{mul,no_inplace}(TensorConstant{(1,) of 2.0}, Elemwise{add,no_inplace}.0)
  15.4%   100.0%       0.000s       9.54e-07s      1     1   Elemwise{add,no_inplace}(Elemwise{add,no_inplace}.0, z)
   ... (remaining 0 Apply instances account for 0.00%(0.00s) of the runtime)
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Extending Theano

This tutorial covers how to extend Theano with novel ops. It mainly focuses on ops that offer a Python implementation, refers to  Extending Theano with a C Op for C-based op.
The first section of this tutorial introduces the Theano Graphs,
as providing a novel Theano op requires a basic understanting of the Theano Graphs. It then proposes an overview of the most important methods that define an op.

As an illustration, this tutorial shows how to write a simple Python-based op which performs operations on Double. It also shows how to implement tests that ensure the proper working of an op.


Note

This tutorial does not cover how to make an op that returns a view or
modifies the values in its inputs. Thus, all ops created with the
instructions described here MUST return newly allocated
memory or reuse the memory provided in the parameter
output_storage of the perform() function. See Views and inplace operations
for an explanation on how to do this.

If your op returns a view or changes the value of its inputs
without doing as prescribed in that page, Theano will run, but will
return correct results for some graphs and wrong results for others.

It is recommended that you run your tests in DebugMode (Theano flag
mode=DebugMode) since it verifies if your op behaves correctly in this
regard.




Note

See the Developer Start Guide for information regarding the versioning
framework, namely about git and GitHub, regarding the development workflow and
how to make a quality contribution.




Theano Graphs

[image: ../_images/apply_node.png]
Theano represents symbolic mathematical computations as graphs. Those graphs are bi-partite graphs (graphs with 2 types of nodes), they are composed of interconnected Apply and Variable nodes.
Variable nodes represent data in the graph, either inputs, outputs or intermediary values. As such, Inputs and Outputs of a graph are lists of Theano Variable nodes. Apply nodes perform computation on these variables to produce new variables. Each Apply node has a link to an instance of Op which describes the computation to perform. This tutorial details how to write such an Op instance. Please refers to Graph Structures for a more detailed explanation about the graph structure.




Op Structure

An op is any Python object which inherits from gof.Op.
This section provides an overview of the methods you typically have to implement to make a new op.  It does not provide extensive coverage of all the
possibilities you may encounter or need.  For that refer to
Op’s contract.

import theano

class MyOp(theano.Op):
    # Properties attribute
    __props__ = ()

    def make_node(self, *inputs):
        pass

    # Python implementation:
    def perform(self, node, inputs_storage, output_storage):
        pass

    # Other type of implementation
    # C implementation: [see theano web site for other functions]
    def c_code(...):
        # ...
        pass
    # Other implementations (pycuda, ...):
    def make_thunk(self, node, storage_map, _, _2):
        pass

    # optional:
    check_input = True

    def __init__(self, ...):
        pass

    def grad(self, inputs, g):
        pass

    def R_op(self, inputs, eval_points):
        pass

    def infer_shape(node, (i0_shapes, ...)):
        pass





An op has to implement some methods defined in the the interface of
gof.Op. More specifically, it is mandatory for an op to define the method make_node() and one of the implementation methods, either perform(), Op.c_code() or make_thunk().


make_node() method creates an Apply node representing the application
of the op on the inputs provided. This method is reponsible for three things:



	it first checks that the input Variables types are compatible
with the current op. If the op cannot be applied on the provided
input types, it must raises an exception (such as TypeError).

	it operates on the Variables found in
*inputs in Theano’s symbolic language to infer the type of
the symbolic output Variables. It creates output Variables of a suitable
symbolic Type to serve as the outputs of this op’s
application.

	it creates an Apply instance with the input and output Variable, and return the Apply instance.






perform() method defines the Python implementation of an op.
It takes several arguments:



	node is a reference to an Apply node which was previously
obtained via the Op‘s make_node() method. It is typically not
used in simple ops, but it contains symbolic information that
could be required for complex ops.

	inputs is a list of references to data which can be operated on using
non-symbolic statements, (i.e., statements in Python, Numpy).

	output_storage is a list of storage cells where the output
is to be stored. There is one storage cell for each output of the op.
The data put in output_storage must match the type of the
symbolic output. It is forbidden to change the length of the list(s)
contained in output_storage.
A function Mode may allow output_storage elements to persist
between evaluations, or it may reset output_storage cells to
hold a value of None.  It can also pre-allocate some memory
for the op to use.  This feature can allow perform to reuse
memory between calls, for example. If there is something
preallocated in the output_storage, it will be of the good
dtype, but can have the wrong shape and have any stride pattern.






perform() method must be determined by the inputs. That is to say,
when applied to identical inputs the method must return the same outputs.

gof.Op allows some other way to define the op implentation.
For instance, it is possible to define Op.c_code() to provide a
C-implementation to the op. Please refers to tutorial
Extending Theano with a C Op for a description of Op.c_code() and other
related c_methods. Note that an op can provide both Python and C implementation.

make_thunk() method is another alternative to perform().
It returns a thunk. A thunk is defined as a zero-arguments
function which encapsulates the computation to be performed by an
op on the arguments of its corresponding node. It takes several parameters:



	node is the Apply instance for which a thunk is requested,

	storage_map is a dict of lists which  maps variables to a one-element
lists holding the variable’s current value. The one-element list acts as
pointer to the value and allows sharing that “pointer” with other nodes
and instances.

	compute_map is also a  dict of lists.
It maps variables to one-element lists holding booleans.  If
the value is 0 then the variable has not been computed and the
value should not be considered valid.  If the value is 1 the
variable has been computed and the value is valid.  If the value
is 2 the variable has been garbage-collected and is no longer
valid, but shouldn’t be required anymore for this call.
The returned function must ensure that it sets the computed
variables as computed in the compute_map.






make_thunk() is useful if you want to generate code and compile
it yourself. For example, this allows you to use PyCUDA to compile GPU
code.

If make_thunk() is defined by an op, it will be used by Theano
to obtain the op’s implementation.
perform() and Op.c_code() will be ignored.




Other methods can be optionally defined by the op.


The __str__() method provides a meaningful string representation of
your op.

__eq__() and __hash__() define respectivelly equality
between two ops and the hash of an op instance.
They will be used by the optimization
phase to merge nodes that are doing equivalent computations (same
inputs, same operation).
Two ops that are equal according __eq__()
should return the same output when they are applied on the same inputs.

The __props__ lists the properties
that influence how the computation is performed (Ususally these are those
that you set in  __init__()). It must be a tuple.
If you don’t have any properties, then you should set this attribute to the
emtpy tuple ().

__props__ enables the  automatic generation of appropriate
__eq__() and __hash__().
Given the method __eq__(), automatically generated from
__props__, two ops will be equal if they have the same values for all
the properties listed in __props__.
Given to the method __hash__() automatically generated from
__props__, two ops will be have the same hash if they have the same
values for all the properties listed in __props__.
__props__ will also generate a  suitable __str__() for your op.
This requires development version after September 1st, 2014 or version 0.7.

The infer_shape() method allows to infer the shape of the op
output variables, without actually computing the outputs.
It takes as input node, a reference to the op Apply node,
and a list of Theano symbolic Varables (i0_shape, i1_shape, ...)
which are the shape of the op input Variables.
infer_shape() returns a list where each element is a tuple representing  the shape of one output.
This could be helpful if one only
needs the shape of the output instead of the actual outputs, which
can be useful, for instance, for optimization procedures.

The grad() method is required if you want to differentiate some cost whose expression includes your op. The gradient may be
specified symbolically in this method. It takes two arguments inputs and
output_gradients which are both lists of symbolic Theano Variables and
those must be operated on using Theano’s symbolic language. The grad
method must return a list containing one Variable for each
input. Each returned Variable represents the gradient with respect
to that input computed based on the symbolic gradients with respect
to each output.
If the output is not differentiable with respect to an input then
this method should be defined to return a variable of type NullType
for that input. Likewise, if you have not implemented the grad
computation for some input, you may return a variable of type
NullType for that input. Please refer to grad() for a more detailed
view.

The R_op() method is needed if you want theano.tensor.Rop to
work with your op.
This function implements the application of the R-operator on the
function represented by your op. Let assume that function is [image: f],
with input [image: x], applying the R-operator means computing the
Jacobian of [image: f] and right-multiplying it by [image: v], the evaluation
point, namely: [image: \frac{\partial f}{\partial x} v].

The optional boolean check_input attribute is used to specify
if you want the types used in your op to check their inputs in their
c_code. It can be used to speed up compilation, reduce overhead
(particularly for scalars) and reduce the number of generated C files.







Op Example

import theano

class DoubleOp(theano.Op):
    __props__ = ()

    def make_node(self, x):
        # check that the theano version has support for __props__
        assert hasattr(self, '_props')
        x = theano.tensor.as_tensor_variable(x)
        return theano.Apply(self, [x], [x.type()])

    def perform(self, node, inputs, output_storage):
        x = inputs[0]
        z = output_storage[0]
        z[0] = x * 2

    def infer_shape(self, node, i0_shapes):
        return i0_shapes

    def grad(self, inputs, output_grads):
        return [output_grads[0] * 2]

    def R_op(self, inputs, eval_points):
        # R_op can receive None as eval_points.
        # That mean there is no diferientiable path through that input
        # If this imply that you cannot compute some outputs,
        # return None for those.
        if eval_points[0] is None:
            return eval_points
        return self.grad(inputs, eval_points)





You can try it as follows:

x = theano.tensor.matrix()
f = theano.function([x], DoubleOp()(x))
import numpy
inp = numpy.random.rand(5, 4)
out = f(inp)
assert numpy.allclose(inp * 2, out)
print inp
print out








How To Test it

Theano has some functionalities to simplify testing. These help test the
infer_shape, grad and R_op methods. Put the following code
in a file and execute it with the theano-nose program.


Basic Tests

Basic tests are done by you just by using the op and checking that it
returns the right answer. If you detect an error, you must raise an
exception. You can use the assert keyword to automatically raise an
AssertionError.

from theano.tests import unittest_tools as utt
from theano import config
class test_Double(utt.InferShapeTester):
    def setUp(self):
        super(test_Double, self).setUp()
        self.op_class = DoubleOp
        self.op = DoubleOp()

    def test_basic(self):
        x = theano.tensor.matrix()
        f = theano.function([x], self.op(x))
        inp = numpy.asarray(numpy.random.rand(5, 4), dtype=config.floatX)
        out = f(inp)
        # Compare the result computed to the expected value.
        utt.assert_allclose(inp * 2, out)





We call utt.assert_allclose(expected_value, value) to compare
NumPy ndarray.This raise an error message with more information. Also,
the default tolerance can be changed with the Theano flags
config.tensor.cmp_sloppy that take values in 0, 1 and 2. The
defaul value do the most strict comparison, 1 and 2 make less strict
comparison.




Testing the infer_shape

When a class inherits from the InferShapeTester class, it gets the
self._compile_and_check method that tests the op’s infer_shape
method. It tests that the op gets optimized out of the graph if only
the shape of the output is needed and not the output
itself. Additionally, it checks that the optimized graph computes
the correct shape, by comparing it to the actual shape of the computed
output.

self._compile_and_check compiles a Theano function. It takes as
parameters the lists of input and output Theano variables, as would be
provided to theano.function, and a list of real values to pass to the
compiled function. It also takes the op class as a parameter
in order to verify that no instance of it appears in the shape-optimized graph.

If there is an error, the function raises an exception. If you want to
see it fail, you can implement an incorrect infer_shape.

When testing with input values with shapes that take the same value
over different dimensions (for instance, a square matrix, or a tensor3
with shape (n, n, n), or (m, n, m)), it is not possible to detect if
the output shape was computed correctly, or if some shapes with the
same value have been mixed up. For instance, if the infer_shape uses
the width of a matrix instead of its height, then testing with only
square matrices will not detect the problem. This is why the
self._compile_and_check method prints a warning in such a case. If
your op works only with such matrices, you can disable the warning with the
warn=False parameter.

from theano.tests import unittest_tools as utt
from theano import config
class test_Double(utt.InferShapeTester):
    # [...] as previous tests.
    def test_infer_shape(self):
        x = theano.tensor.matrix()
        self._compile_and_check([x],  # theano.function inputs
                                [self.op(x)],  # theano.function outputs
                                # Always use not square matrix!
                                # inputs data
                                [numpy.asarray(numpy.random.rand(5, 4),
                                               dtype=config.floatX)],
                                # Op that should be removed from the graph.
                                self.op_class)








Testing the gradient

The function verify_grad
verifies the gradient of an op or Theano graph. It compares the
analytic (symbolically computed) gradient and the numeric
gradient (computed through the Finite Difference Method).

If there is an error, the function raises an exception. If you want to
see it fail, you can implement an incorrect gradient (for instance, by removing
the multiplication by 2).

def test_grad(self):
    theano.tests.unittest_tools.verify_grad(self.op,
                                            [numpy.random.rand(5, 7, 2)])








Testing the Rop

The class RopLop_checker defines the functions
RopLop_checker.check_mat_rop_lop(), RopLop_checker.check_rop_lop() and
RopLop_checker.check_nondiff_rop(). These allow to test the
implementation of the Rop method of a particular op.

For instance, to verify the Rop method of the DoubleOp, you can use this:

import numpy
import theano.tests
from theano.tests.test_rop import RopLop_checker
class test_DoubleRop(RopLop_checker):
    def setUp(self):
        super(test_DoubleRop, self).setUp()
    def test_double_rop(self):
        self.check_rop_lop(DoubleRop()(self.x), self.in_shape)








Testing GPU Ops

Ops to be executed on the GPU should inherit from the
theano.sandbox.cuda.GpuOp and not theano.Op. This allows
Theano to distinguish them. Currently, we use this to test if the
NVIDIA driver works correctly with our sum reduction code on the GPU.






Running Your Tests

To perform your tests, you may select either one of the three
following methods:


theano-nose

The method of choice to conduct tests is to run the file
theano-nose. In a regular Theano installation, the latter will be
on the operating system’s path and directly accessible from any
folder. Otherwise, it can be accessed in the Theano/bin
folder. The following command lines may be used for the corresponding
purposes:


	theano-nose --theano: Run every test found in Theano’s path.

	theano-nose folder_name: Run every test found in the folder folder_name.

	theano-nose test_file.py: Run every test found in the file test_file.py.



The following are particularly useful for development purposes since
they call for particular classes or even for particular tests:


	theano-nose test_file.py:test_DoubleRop: Run every test found inside the class test_DoubleRop.

	theano-nose test_file.py:test_DoubleRop.test_double_op: Run only the test test_double_op
in the class test_DoubleRop.



Help with the use and functionalities of theano-nose may be
obtained by running it with the command line parameter --help
(-h).




nosetests

The command nosetests can also be used.  Although it lacks the
useful functionalities that theano-nose provides, nosetests
can be called similarly to theano-nose from any folder in Python’s
path like so:

nosetests [suffix similar to the above].

More documentation on nosetests is available here:
nosetests [http://readthedocs.org/docs/nose/en/latest/].




In-file

One may also add a block of code similar to the following at the end
of the file containing a specific test of interest and run the
file. In this example, the test test_DoubleRop in the class
test_double_op would be performed.

if __name__ == '__main__':
   t = test_DoubleRop("test_double_rop")
   t.setUp()
   t.test_double_rop()





We recommend that when we execute a file, we run all tests in that
file. This can be done by adding this at the end of your test files:

if __name__ == '__main__':
    unittest.main()










Exercise

Run the code of the DoubleOp example above.

Modify and execute to compute: x * y.

Modify and execute the example to return two outputs: x + y and x - y.

You can omit the Rop functions. Try to implement the testing apparatus
described above.

(Notice that Theano’s current elemwise fusion optimization is
only applicable to computations involving a single output. Hence, to gain
efficiency over the basic solution that is asked here, the two operations would
have to be jointly optimized explicitly in the code.)




as_op

as_op is a python decorator that converts a python function into a
basic Theano op that will call the supplied function during execution.

This isn’t the recommended way to build an op, but allows for a quick
implementation.

It takes an optional infer_shape() parameter that must have this
signature:


def infer_shape(node, input_shapes):
     # ...
     return output_shapes






	input_shapes and output_shapes are lists of tuples that
represent the shape of the corresponding inputs/outputs.







Note

Not providing the infer_shape method prevents shape-related
optimizations from working with this op. For example
your_op(inputs, ...).shape will need the op to be executed just
to get the shape.




Note

As no grad is defined, this means you won’t be able to
differentiate paths that include this op.




Note

It converts the Python function to a callable object that takes as
inputs Theano variables that were declared.




as_op Example

import theano
import numpy
from theano.compile.ops import as_op

def infer_shape_numpy_dot(node, input_shapes):
    ashp, bshp = input_shapes
    return [ashp[:-1] + bshp[-1:]]

@as_op(itypes=[theano.tensor.fmatrix, theano.tensor.fmatrix],
       otypes=[theano.tensor.fmatrix], infer_shape=infer_shape_numpy_dot)
def numpy_dot(a, b):
   return numpy.dot(a, b)





You can try it as follows:

x = theano.tensor.fmatrix()
y = theano.tensor.fmatrix()
f = function([x, y], numpy_dot(x, y))
inp1 = numpy.random.rand(5, 4)
inp2 = numpy.random.rand(4, 7)
out = f(inp1, inp2)








Exercise

Run the code of the numpy_dot example above.

Modify and execute to compute: numpy.add and numpy.subtract.


	Modify and execute the example to return two outputs: x + y

	and x - y.








Random numbers in tests

Making tests errors more reproducible is a good practice. To make your
tests more reproducible, you need a way to get the same random
numbers. You can do this by seeding NumPy’s random number
generator.

For convenience, the classes InferShapeTester and RopLop_checker
already do this for you. If you implement your own setUp function,
don’t forget to call the parent setUp function.

For more details see Using Random Values in Test Cases.

Solution




Documentation

See Documentation Documentation AKA Meta-Documentation, for some information on how to generate
the documentation.

Here is an example how to add docstring to a class.

import theano

class DoubleOp(theano.Op):
""" Double each element of a tensor.

:param x: input tensor.

:return: a tensor of the same shape and dtype as the input with all
    values doubled.

:note:
    this is a test note

:seealso:
    You can use the elemwise op to replace this example.
    Just execute `x * 2` with x being a Theano variable.

.. versionadded:: 0.6
"""





This is how it will show up for files that we auto-list in the library
documentation:


	
class theano.misc.doubleop.DoubleOp(use_c_code='/usr/bin/g++')

	Double each element of a tensor.





	Parameters:	x – input tensor.


	Returns:	a tensor of the same shape and dtype as the input with all
values doubled.


	Note:	this is a test note


	Seealso:	You can use the elemwise op to replace this example.
Just execute x * 2 with x being a Theano variable.






New in version 0.6.










Final Note

A more extensive discussion of this section’s content may be found in
the advanced tutorial Extending Theano.

The section Other ops includes more instructions for
the following specific cases:



	Scalar/Elemwise/Reduction Ops

	SciPy Ops

	Sparse Ops

	Random ops

	OpenMP Ops

	Numba Ops
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Extending Theano with a C Op

This tutorial covers how to extend Theano with an op that offers a C
implementation. It does not cover ops that run on a GPU but it does introduce
many elements and concepts which are relevant for GPU ops. This tutorial is
aimed at individuals who already know how to extend Theano (see tutorial
Extending Theano) by adding a new op with a Python implementation
and will only cover the additional knowledge required to also produce ops
with C implementations.

Providing a Theano op with a C implementation requires to interact with
Python’s C-API and Numpy’s C-API. Thus, the first step of this tutorial is to
introduce both and highlight their features which are most relevant to the
task of implementing a C op. This tutorial then introduces the most important
methods that the op needs to implement in order to provide a usable C
implementation. Finally, it shows how to combine these elements to write a
simple C op for performing the simple task of multiplying every element in a
vector by a scalar.


Python C-API

Python provides a C-API to allows the manipulation of python objects from C
code. In this API, all variables that represent Python objects are of type
PyObject *. All objects have a pointer to their type object and a reference
count field (that is shared with the python side). Most python methods have
an equivalent C function that can be called on the PyObject * pointer.

As such, manipulating a PyObject instance is often straight-forward but it
is important to properly manage its reference count. Failing to do so can
lead to undesired behavior in the C code.


Reference counting

Reference counting is a mechanism for keeping track, for an object, of
the number of references to it held by other entities. This mechanism is often
used for purposes of garbage collecting because it allows to easily see if
an object is still being used by other entities. When the reference count
for an object drops to 0, it means it is not used by anyone any longer and can
be safely deleted.

PyObjects implement reference counting and the Python C-API defines a number
of macros to help manage those reference counts. The definition of these
macros can be found here : Python C-API Reference Counting [https://docs.python.org/2/c-api/refcounting.html]. Listed below are the
two macros most often used in Theano C ops.


	
void Py_XINCREF(PyObject *o)

	Increments the reference count of object o. Without effect if the
object is NULL.






	
void Py_XDECREF(PyObject *o)

	Decrements the reference count of object o. If the reference count
reaches 0, it will trigger a call of the object’s deallocation function.
Without effect if the object is NULL.





The general principle, in the reference counting paradigm, is that the owner
of a reference to an object is responsible for disposing properly of it.
This can be done by decrementing the reference count once the reference is no
longer used or by transfering ownership; passing on the reference to a new
owner which becomes responsible for it.

Some functions return “borrowed references”; this means that they return a
reference to an object without transfering ownership of the reference to the
caller of the function. This means that if you call a function which returns a
borrowed reference, you do not have the burden of properly disposing of that
reference. You should not call Py_XDECREF() on a borrowed reference.

Correctly managing the reference counts is important as failing to do so can
lead to issues ranging from memory leaks to segmentation faults.






NumPy C-API

The NumPy library provides a C-API to allow users to create, access and
manipulate NumPy arrays from within their own C routines. NumPy’s ndarrays
are used extensively inside Theano and so extending Theano with a C op will
require interaction with the NumPy C-API.

This sections covers the API’s elements that are often required to write code
for a Theano C op. The full documentation for the API can be found here :
NumPy C-API [http://docs.scipy.org/doc/numpy/reference/c-api.html].


NumPy data types

To allow portability between platforms, the NumPy C-API defines its own data
types which should be used whenever you are manipulating a NumPy array’s
internal data. The data types most commonly used to implement C ops are the
following : npy_int{8,16,32,64}, npy_uint{8,16,32,64} and
npy_float{32,64}.

You should use these data types when manipulating a NumPy array’s internal
data instead of C primitives because the size of the memory representation
for C primitives can vary between platforms. For instance, a C long can be
represented in memory with 4 bytes but it can also be represented with 8.
On the other hand, the in-memory size of NumPy data types remains constant
across platforms. Using them will make your code simpler and more portable.

The full list of defined data types can be found here :
NumPy C-API data types [http://docs.scipy.org/doc/numpy/reference/c-api.dtype.html#c-type-names].




NumPy ndarrays

In the NumPy C-API, NumPy arrays are represented as instances of the
PyArrayObject class which is a descendant of the PyObject class. This means
that, as for any other Python object that you manipulate from C code, you
need to appropriatedly manage the reference counts of PyArrayObject instances.

Unlike in a standard multidimensionnal C array, a NumPy array’s internal data
representation does not have to occupy a continuous region in memory. In fact,
it can be C-contiguous, F-contiguous or non-contiguous. C-contiguous means
that the data is not only contiguous in memory but also that it is organized
such that the index of the latest dimension changes the fastest. If the
following array

x = [[1, 2, 3],
     [4, 5, 6]]





is C-contiguous, it means that, in memory, the six values contained in the
array x are stored in the order [1, 2, 3, 4, 5, 6] (the first value is
x[0,0], the second value is x[0,1], the third value is x[0,2], the,
fourth value is x[1,0], etc). F-contiguous (or Fortran Contiguous) also
means that the data is contiguous but that it is organized such that the index
of the latest dimension changes the slowest. If the array x is
F-contiguous, it means that, in memory, the values appear in the order
[1, 4, 2, 5, 3, 6] (the first value is x[0,0], the second value is
x[1,0], the third value is x[0,1], etc).

Finally, the internal data can be non-contiguous. In this case, it occupies
a non-contiguous region in memory but it is still stored in an organized
fashion : the distance between the element x[i,j] and the element
x[i+1,j] of the array is constant over all valid values of i and
j, just as the distance between the element x[i,j] and the element
x[i,j+1] of the array is constant over all valid values of i and j.
This distance between consecutive elements of an array over a given dimension,
is called the stride of that dimension.




Accessing NumPy ndarrays’ data and properties

The following macros serve to access various attributes of NumPy ndarrays.


	
void* PyArray_DATA(PyArrayObject* arr)

	Returns a pointer to the first element of the array’s data. The returned
pointer must be cast to a pointer of the proper Numpy C-API data type
before use.






	
int PyArray_NDIM(PyArrayObject* arr)

	Returns the number of dimensions in the the array pointed by arr






	
npy_intp* PyArray_DIMS(PyArrayObject* arr)

	Returns a pointer on the first element of arr‘s internal array
describing its dimensions. This internal array contains as many elements
as the array arr has dimensions.

The macro PyArray_SHAPE() is a synonym of PyArray_DIMS() : it has
the same effect and is used in an identical way.






	
npy_intp* PyArray_STRIDES(PyArrayObject* arr)

	Returns a pointer on the first element of arr‘s internal array
describing the stride for each of its dimension. This array has as many
elements as the number of dimensions in arr. In this array, the
strides are expressed in number of bytes.






	
PyArray_Descr* PyArray_DESCR(PyArrayObject* arr)

	Returns a reference to the object representing the dtype of the array.

The macro PyArray_DTYPE() is a synonym of the PyArray_DESCR() : it
has the same effect and is used in an identical way.





	Note:	This is a borrowed reference so you do not need to decrement its
reference count once you are done with it.










	
int PyArray_TYPE(PyArrayObject* arr)

	Returns the typenumber for the elements of the array. Like the dtype, the
typenumber is a descriptor for the type of the data in the array. However,
the two are not synonyms and, as such, cannot be used in place of the
other.






	
npy_intp PyArray_SIZE(PyArrayObject* arr)

	Returns to total number of elements in the array






	
bool PyArray_CHKFLAGS(PyArrayObject* arr, flags)

	Returns true if the array has the specified flags. The variable flag
should either be a NumPy array flag or an integer obtained by applying
bitwise or to an ensemble of flags.

The flags that can be used in with this macro are :
NPY_ARRAY_C_CONTIGUOUS, NPY_ARRAY_F_CONTIGUOUS, NPY_ARRAY_OWNDATA,
NPY_ARRAY_ALIGNED, NPY_ARRAY_WRITEABLE, NPY_ARRAY_UPDATEIFCOPY.








Creating NumPy ndarrays

The following functions allow the creation and copy of NumPy arrays :


	
PyObject* PyArray_EMPTY(int nd, npy_intp* dims, typenum dtype,

	
int fortran)

	Constructs a new ndarray with the number of dimensions specified by
nd, shape specified by dims and data type specified by dtype.
If fortran is equal to 0, the data is organized in a C-contiguous
layout, otherwise it is organized in a F-contiguous layout. The array
elements are not initialized in any way.

The function PyArray_Empty() performs the same function as the macro
PyArray_EMPTY() but the data type is given as a pointer to a
PyArray_Descr object instead of a typenum.






	
PyObject* PyArray_ZEROS(int nd, npy_intp* dims, typenum dtype,

	
int fortran)

	Constructs a new ndarray with the number of dimensions specified by
nd, shape specified by dims and data type specified by dtype.
If fortran is equal to 0, the data is organized in a C-contiguous
layout, otherwise it is organized in a F-contiguous layout. Every element
in the array is initialized to 0.

The function PyArray_Zeros() performs the same function as the macro
PyArray_ZEROS() but the data type is given as a pointer to a
PyArray_Descr object instead of a typenum.






	
PyArrayObject* PyArray_GETCONTIGUOUS(PyObject* op)

	Returns a C-contiguous and well-behaved copy of the array op. If op is
already C-contiguous and well-behaved, this function simply returns a
new reference to op.










Methods the C Op needs to define

There is a key difference between an op defining a Python implementation for
its computation and defining a C implementation. In the case of a Python
implementation, the op defines a function perform() which executes the
required Python code to realize the op. In the case of a C implementation,
however, the op does not define a function that will execute the C code; it
instead defines functions that will return the C code to the caller.

This is because calling C code from Python code comes with a significant
overhead. If every op was responsible for executing its own C code, every
time a Theano function was called, this overhead would occur as many times
as the number of ops with C implementations in the function’s computational
graph.

To maximize performance, Theano instead requires the C ops to simply return
the code needed for their execution and takes upon itself the task of
organizing, linking and compiling the code from the various ops. Through this,
Theano is able to minimize the number of times C code is called from Python
code.

The following is a very simple example to illustrate how it’s possible to
obtain performance gains with this process. Suppose you need to execute,
from Python code, 10 different ops, each one having a C implementation. If
each op was responsible for executing its own C code, the overhead of
calling C code from Python code would occur 10 times. Consider now the case
where the ops instead return the C code for their execution. You could get
the C code from each op and then define your own C module that would call
the C code from each op in succession. In this case, the overhead would only
occur once; when calling your custom module itself.

Moreover, the fact that Theano itself takes care of compiling the C code,
instead of the individual ops, allows Theano to easily cache the compiled C
code. This allows for faster compilation times.

See Implementing the arithmetic Ops in C for the full documentation of the various methods of the
class Op that are related to the C implementation. Of particular interest are:


	The methods Op.c_libraries() and Op.c_lib_dirs() to allow
your op to use external libraries.

	The method Op.c_code_cleanup() to specify how the op should
clean up what it has allocated during its execution.

	The methods Op.c_init_code() and Op.c_init_code_apply()
to specify code that should be executed once when the module is
initialized, before anything else is executed.

	The methods Op.c_compile_args() and
Op.c_no_compile_args() to specify requirements regarding how
the op’s C code should be compiled.



This section describes the methods Op.c_code(),
Op.c_support_code(), Op.c_support_code_apply() and
Op.c_code_cache_version() because they are the ones that are most
commonly used.


	
c_code(node, name, input_names, output_names, sub)

	This method returns a string containing the C code to perform the
computation required by this op.

The node argument is an Apply node representing an
application of the current Op on a list of inputs, producing a list of
outputs.

input_names is a sequence of strings which contains as many strings
as the op has inputs. Each string contains the name of the C variable
to which the corresponding input has been assigned. For example, the name
of the C variable representing the first input of the op is given by
input_names[0]. You should therefore use this name in your
C code to interact with that variable. output_names is used
identically to input_names, but for the op’s outputs.

Finally, sub is a dictionary of extras parameters to the c_code
method. Among other things, it contains sub['fail'] which is a string
of C code that you should include in your C code (after ensuring that a
Python exception is set) if it needs to raise an exception. Ex:

c_code = """
    PyErr_Format(PyExc_ValueError, "X does not have the right value");
    %(fail)s;
""" % {'fail' : sub['fail']}





to raise a ValueError Python exception with the specified message.
The function PyErr_Format() supports string formatting so it is
possible to tailor the error message to the specifics of the error
that occured. If PyErr_Format() is called with more than two
arguments, the subsequent arguments are used to format the error message
with the same behavior as the function PyString_FromFormat() [https://docs.python.org/2/c-api/string.html#c.PyString_FromFormat]. The
% characters in the format characters need to be escaped since the C
code itself is defined in a string which undergoes string formatting.

c_code = """
    PyErr_Format(PyExc_ValueError,
                 "X==%%i but it should be greater than 0", X);
    %(fail)s;
""" % {'fail' : sub['fail']}









	Note:	Your C code should not return the output of the computation but
rather put the results in the C variables whose names are contained in
the output_names.










	
c_support_code()

	Returns a string containing some support C code for this op. This code
will be included at the global scope level and can be used to define
functions and structs that will be used by every apply of this op.






	
c_support_code_apply(node, name)

	Returns a string containing some support C code for this op. This code
will be included at the global scope level and can be used to define
functions and structs that will be used by this op. The difference between
this method and c_support_code() is that the C code specified in
c_support_code_apply() should be specific to each apply of the Op,
while c_support_code() is for support code that is not specific to
each apply.

Both c_support_code() and c_support_code_apply () are necessary
because a Theano op can be used more than once in a given Theano
function. For example, an op that adds two matrices could be used at some
point in the Theano function to add matrices of integers and, at another
point, to add matrices of doubles. Because the dtype of the inputs and
outputs can change between different applies of the op, any support code
that relies on a certain dtype is specific to a given apply of the op and
should therefore be defined in c_support_code_apply().






	
c_code_cache_version()

	Returns a tuple of integers representing the version of the C code in this
op. Ex : (1, 4, 0) for version 1.4.0

This tuple is used by Theano to cache the compiled C code for this op. As
such, the return value MUST BE CHANGED every time the C code is altered
or else Theano will disregard the change in the code and simply load a
previous version of the op from the cache. If you want to avoid caching of
the C code of this op, return an empty tuple or do not implement this
method.





	Note:	Theano can handle tuples of any hashable objects as return values
for this function but, for greater readability and easier management,
this function should return a tuple of integers as previously
described.












Simple C Op example

In this section, we put together the concepts that were covered in this
tutorial to generate an op which multiplies every element in a vector
by a scalar and returns the resulting vector. This is intended to be a simple
example so the methods c_support_code() and c_support_code_apply() are
not used because they are not required.

In the C code below notice how the reference count on the output variable is
managed. Also take note of how the new variables required for the op’s
computation are declared in a new scope to avoid cross-initialization errors.

Also, in the C code, it is very important to properly validate the inputs
and outputs storage. Theano guarantees that the inputs exist and have the
right number of dimensions but it does not guarantee their exact shape. For
instance, if an op computes the sum of two vectors, it needs to validate that
its two inputs have the same shape. In our case, we do not need to validate
the exact shapes of the inputs because we don’t have a need that they match
in any way.

For the outputs, things are a little bit more subtle. Theano does not
guarantee that they have been allocated but it does guarantee that, if they
have been allocated, they have the right number of dimension. Again, Theano
offers no guarantee on the exact shapes. This means that, in our example, we
need to validate that the output storage has been allocated and has the same
shape as our vector input. If it is not the case, we allocate a new output
storage with the right shape and number of dimensions.

import numpy
import theano
from theano import gof
import theano.tensor as T

class VectorTimesScalar(gof.Op):
    __props__ = ()

    def make_node(self, x, y):
        # Validate the inputs' type
        if x.type.ndim != 1:
            raise TypeError('x must be a 1-d vector')
        if y.type.ndim != 0:
            raise TypeError('y must be a scalar')

        # Create an output variable of the same type as x
        output_var = x.type()

        return gof.Apply(self, [x, y], [output_var])

    def c_code_cache_version(self):
        return (1, 0)

    def c_code(self, node, name, inp, out, sub):
        x, y = inp
        z, = out

        # Extract the dtypes of the inputs and outputs storage to
        # be able to declare pointers for those dtypes in the C
        # code.
        dtype_x = node.inputs[0].dtype
        dtype_y = node.inputs[1].dtype
        dtype_z = node.outputs[0].dtype

        itemsize_x = numpy.dtype(dtype_x).itemsize
        itemsize_z = numpy.dtype(dtype_z).itemsize

        fail = sub['fail']

        c_code = """
        // Validate that the output storage exists and has the same
        // dimension as x.
        if (NULL == %(z)s ||
            PyArray_DIMS(%(x)s)[0] != PyArray_DIMS(%(z)s)[0])
        {
            /* Reference received to invalid output variable.
            Decrease received reference's ref count and allocate new
            output variable */
            Py_XDECREF(%(z)s);
            %(z)s = (PyArrayObject*)PyArray_EMPTY(1,
                                                PyArray_DIMS(%(x)s),
                                                PyArray_TYPE(%(x)s),
                                                0);

            if (!%(z)s) {
                %(fail)s;
            }
        }

        // Perform the vector multiplication by a scalar
        {
            /* The declaration of the following variables is done in a new
            scope to prevent cross initialization errors */
            npy_%(dtype_x)s* x_data_ptr =
                            (npy_%(dtype_x)s*)PyArray_DATA(%(x)s);
            npy_%(dtype_z)s* z_data_ptr =
                            (npy_%(dtype_z)s*)PyArray_DATA(%(z)s);
            npy_%(dtype_y)s y_value =
                            ((npy_%(dtype_y)s*)PyArray_DATA(%(y)s))[0];
            int x_stride = PyArray_STRIDES(%(x)s)[0] / %(itemsize_x)s;
            int z_stride = PyArray_STRIDES(%(z)s)[0] / %(itemsize_z)s;
            int x_dim = PyArray_DIMS(%(x)s)[0];

            for(int i=0; i < x_dim; i++)
            {
                z_data_ptr[i * z_stride] = (x_data_ptr[i * x_stride] *
                                            y_value);
            }
        }
        """

        return c_code % locals()








More complex C Op example

This section introduces a new example, slightly more complex than the previous
one, with an op to perform an element-wise multiplication between the elements
of two vectors. This new example differs from the previous one in its use
of the methods c_support_code() and c_support_code_apply() (it does
not need to use them but it does so to explain their use) and its capacity
to support inputs of different dtypes.

Recall the method c_support_code() is meant to produce code that will
be used for every apply of the op. This means that the C code in this
method must be valid in every setting your op supports. If the op is meant
to supports inputs of various dtypes, the C code in this method should be
generic enough to work with every supported dtype. If the op operates on
inputs that can be vectors or matrices, the C code in this method should
be able to accomodate both kinds of inputs.

In our example, the method c_support_code() is used to declare a C
function to validate that two vectors have the same shape. Because our
op only supports vectors as inputs, this function is allowed to rely
on its inputs being vectors. However, our op should support multiple
dtypes so this function cannot rely on a specific dtype in its inputs.

The method c_support_code_apply(), on the other hand, is allowed
to depend on the inputs to the op because it is apply-specific. Therefore, we
use it to define a function to perform the multiplication between two vectors.
Variables or functions defined in the method c_support_code_apply() will
be included at the global scale for every apply of the Op. Because of this,
the names of those variables and functions should include the name of the op,
like in the example. Otherwise, using the op twice in the same graph will give
rise to conflicts as some elements will be declared more than once.

The last interesting difference occurs in the c_code() method. Because the
dtype of the output is variable and not guaranteed to be the same as any of
the inputs (because of the upcast in the method make_node()), the typenum
of the output has to be obtained in the Python code and then included in the
C code.

class VectorTimesVector(gof.Op):
    __props__ = ()

    def make_node(self, x, y):
        # Validate the inputs' type
        if x.type.ndim != 1:
            raise TypeError('x must be a 1-d vector')
        if y.type.ndim != 1:
            raise TypeError('y must be a 1-d vector')

        # Create an output variable of the same type as x
        output_var = theano.tensor.TensorType(
                        dtype=theano.scalar.upcast(x.dtype, y.dtype),
                        broadcastable=[False])()

        return gof.Apply(self, [x, y], [output_var])

    def c_code_cache_version(self):
        return (1, 0, 2)

    def c_support_code(self):
        c_support_code = """
        bool vector_same_shape(PyArrayObject* arr1,
            PyArrayObject* arr2)
        {
            return (PyArray_DIMS(arr1)[0] == PyArray_DIMS(arr2)[0]);
        }
        """

        return c_support_code

    def c_support_code_apply(self, node, name):
        dtype_x = node.inputs[0].dtype
        dtype_y = node.inputs[1].dtype
        dtype_z = node.outputs[0].dtype

        c_support_code = """
        void vector_elemwise_mult_%(name)s(npy_%(dtype_x)s* x_ptr,
            int x_str, npy_%(dtype_y)s* y_ptr, int y_str,
            npy_%(dtype_z)s* z_ptr, int z_str, int nbElements)
        {
            for (int i=0; i < nbElements; i++){
                z_ptr[i * z_str] = x_ptr[i * x_str] * y_ptr[i * y_str];
            }
        }
        """

        return c_support_code % locals()

    def c_code(self, node, name, inp, out, sub):
        x, y = inp
        z, = out

        dtype_x = node.inputs[0].dtype
        dtype_y = node.inputs[1].dtype
        dtype_z = node.outputs[0].dtype

        itemsize_x = numpy.dtype(dtype_x).itemsize
        itemsize_y = numpy.dtype(dtype_y).itemsize
        itemsize_z = numpy.dtype(dtype_z).itemsize

        typenum_z = numpy.dtype(dtype_z).num

        fail = sub['fail']

        c_code = """
        // Validate that the inputs have the same shape
        if ( !vector_same_shape(%(x)s, %(y)s))
        {
            PyErr_Format(PyExc_ValueError, "Shape mismatch : "
                        "x.shape[0] and y.shape[0] should match but "
                        "x.shape[0] == %%i and y.shape[0] == %%i",
                        PyArray_DIMS(%(x)s)[0], PyArray_DIMS(%(y)s)[0]);
            %(fail)s;
        }

        // Validate that the output storage exists and has the same
        // dimension as x.
        if (NULL == %(z)s || !(vector_same_shape(%(x)s, %(z)s)))
        {
            /* Reference received to invalid output variable.
            Decrease received reference's ref count and allocate new
            output variable */
            Py_XDECREF(%(z)s);
            %(z)s = (PyArrayObject*)PyArray_EMPTY(1,
                                                PyArray_DIMS(%(x)s),
                                                %(typenum_z)s,
                                                0);

            if (!%(z)s) {
                %(fail)s;
            }
        }

        // Perform the vector elemwise multiplication
        vector_elemwise_mult_%(name)s(
                                (npy_%(dtype_x)s*)PyArray_DATA(%(x)s),
                                PyArray_STRIDES(%(x)s)[0] / %(itemsize_x)s,
                                (npy_%(dtype_y)s*)PyArray_DATA(%(y)s),
                                PyArray_STRIDES(%(y)s)[0] / %(itemsize_y)s,
                                (npy_%(dtype_z)s*)PyArray_DATA(%(z)s),
                                PyArray_STRIDES(%(z)s)[0] / %(itemsize_z)s,
                                PyArray_DIMS(%(x)s)[0]);
        """

        return c_code % locals()








Alternate way of defining C Ops

The two previous examples have covered the standard way of implementing C Ops
in Theano by inheriting from the class Op. This process is mostly
simple but it still involves defining many methods as well as mixing, in the
same file, both Python and C code which tends to make the result less
readable.

To help with this, Theano defines a class, COp, from which new C ops
can inherit. The class COp aims to simplify the process of implementing
C ops by doing the following :


	It allows you to define the C implementation of your op in a distinct
C code file. This makes it easier to keep your Python and C code
readable and well indented.

	It can automatically handle all the methods that return C code,
in addition to Op.c_code_cache_version() based on the
provided external C implementation.



To illustrate how much simpler the class COp makes the process of defining
a new op with a C implementation, let’s revisit the second example of this
tutorial, the VectorTimesVector op. In that example, we implemented an op
to perform the task of element-wise vector-vector multiplication. The two
following blocks of code illustrate what the op would look like if it was
implemented using the COp class.

The new op is defined inside a Python file with the following code :

import theano
from theano import gof

class VectorTimesVector(gof.COp):
    __props__ = ()

    func_file = "./vectorTimesVector.c"
    func_name = "APPLY_SPECIFIC(vector_times_vector)"

    def __init__(self):
        super(VectorTimesVector, self).__init__(self.func_file,
                                                self.func_name)

    def make_node(self, x, y):
        # Validate the inputs' type
        if x.type.ndim != 1:
            raise TypeError('x must be a 1-d vector')
        if y.type.ndim != 1:
            raise TypeError('y must be a 1-d vector')

        # Create an output variable of the same type as x
        output_var = theano.tensor.TensorType(
                        dtype=theano.scalar.upcast(x.dtype, y.dtype),
                        broadcastable=[False])()

        return gof.Apply(self, [x, y], [output_var])





And the following is the C implementation of the op, defined in an external
C file named vectorTimesVector.c :

#section support_code

// Support code function
bool vector_same_shape(PyArrayObject* arr1, PyArrayObject* arr2)
{
    return (PyArray_DIMS(arr1)[0] == PyArray_DIMS(arr2)[0]);
}


#section support_code_apply

// Apply-specific support function
void APPLY_SPECIFIC(vector_elemwise_mult)(
    DTYPE_INPUT_0* x_ptr, int x_str,
    DTYPE_INPUT_1* y_ptr, int y_str,
    DTYPE_OUTPUT_0* z_ptr, int z_str, int nbElements)
{
    for (int i=0; i < nbElements; i++){
        z_ptr[i * z_str] = x_ptr[i * x_str] * y_ptr[i * y_str];
    }
}

// Apply-specific main function
int APPLY_SPECIFIC(vector_times_vector)(PyArrayObject* input0,
                                        PyArrayObject* input1,
                                        PyArrayObject** output0)
{
    // Validate that the inputs have the same shape
    if ( !vector_same_shape(input0, input1))
    {
        PyErr_Format(PyExc_ValueError, "Shape mismatch : "
                    "input0.shape[0] and input1.shape[0] should "
                    "match but x.shape[0] == %i and "
                    "y.shape[0] == %i",
                    PyArray_DIMS(input0)[0], PyArray_DIMS(input1)[0]);
        return 1;
    }

    // Validate that the output storage exists and has the same
    // dimension as x.
    if (NULL == *output0 || !(vector_same_shape(input0, *output0)))
    {
        /* Reference received to invalid output variable.
        Decrease received reference's ref count and allocate new
        output variable */
        Py_XDECREF(*output0);
        *output0 = (PyArrayObject*)PyArray_EMPTY(1,
                                                PyArray_DIMS(input0),
                                                TYPENUM_OUTPUT_0,
                                                0);

        if (!*output0) {
            PyErr_Format(PyExc_ValueError,
                        "Could not allocate output storage");
            return 1;
        }
    }

    // Perform the actual vector-vector multiplication
    APPLY_SPECIFIC(vector_elemwise_mult)(
                            (DTYPE_INPUT_0*)PyArray_DATA(input0),
                            PyArray_STRIDES(input0)[0] / ITEMSIZE_INPUT_0,
                            (DTYPE_INPUT_1*)PyArray_DATA(input1),
                            PyArray_STRIDES(input1)[0] / ITEMSIZE_INPUT_1,
                            (DTYPE_OUTPUT_0*)PyArray_DATA(*output0),
                            PyArray_STRIDES(*output0)[0] / ITEMSIZE_OUTPUT_0,
                            PyArray_DIMS(input0)[0]);

    return 0;
}





As you can see from this example, the Python and C implementations are nicely
decoupled which makes them much more readable than when they were intertwined
in the same file and the C code contained string formatting markers.

Now that we have motivated the COp class, we can have a more precise look at
what it does for us. For this, we go through the various elements that make up
this new version of the VectorTimesVector op :


	Parent class : instead of inheriting from the class Op,
VectorTimesVector inherits from the class COp.

	Constructor : in our new op, the __init__() method has an
important use; to inform the constructor of the COp class
of the location, on the filesystem of the C implementation of
this op. To do this, it gives a list of file paths containing
the C code for this op.  To auto-generate the c_code method
with a function call you can specify the function name as the
second parameter.  The paths should be given as a relative
path from the folder where the descendant of the COp class
is defined.

	make_node() : the make_node() method is absolutely
identical to the one in our old example. Using the COp
class doesn’t change anything here.

	External C code : the external C code implements the various
functions associated with the op.  Writing this C code
involves a few subtleties which deserve their own respective
sections.




Main function

If you pass a function name to the __init__() method of the
COp class, it must respect the following constraints:


	It must return an int. The value of that int indicates whether
the op could perform its task or not. A value of 0 indicates
success while any non-zero value will interrupt the execution
of the Theano function.  When returning non-zero the function
must set a python exception indicating the details of the
problem.

	It must receive one argument for each input to the op followed
by one pointer to an argument for each output of the op.  The
types for the argument is dependant on the Types (that is
theano Types) of your inputs and outputs.



For example, the main C function of an op that takes two TensorTypes
(which has PyArrayObject * as its C type) as inputs and returns
both their sum and the difference between them would have four
parameters (two for the op’s inputs and two for its outputs) and it’s
signature would look something like this :

int sumAndDiffOfScalars(PyArrayObject* in0, PyArrayObject* in1,
                        PyArrayObject** out0, PyArrayObject** out1)








Macros

For certain section tags, your C code can benefit from a number of
pre-defined macros.  These section tags have no macros: init_code,
support_code. All other tags will have the support macros
discussed below.


	APPLY_SPECIFIC(str) which will automatically append a name
unique to the Apply node that applies the Op at the end
of the provided ``str`. The use of this macro is discussed
futher below.



For every input which has a dtype attribute (this means
Tensors, and equivalent types on GPU), the following macros will be
defined unless your Op class has an Op.check_input attribute
defined to False. In these descrptions ‘i’ refers to the position
(indexed from 0) in the input array.


	DTYPE_INPUT_{i} : NumPy dtype of the data in the array.
This is the variable type corresponding to the NumPy dtype, not the
string representation of the NumPy dtype. For instance, if the op’s
first input is a float32 ndarray, then the macro DTYPE_INPUT_0
corresponds to npy_float32 and can directly be used to declare a
new variable of the same dtype as the data in the array :

DTYPE_INPUT_0 myVar = someValue;







	TYPENUM_INPUT_{i} : Typenum of the data in the array



	ITEMSIZE_INPUT_{i} : Size, in bytes, of the elements in
the array.





In the same way, the macros DTYPE_OUTPUT_{i},
ITEMSIZE_OUTPUT_{i} and TYPENUM_OUTPUT_{i} are defined for
every output ‘i’ of the op.

In addition to these macros, the init_code_struct, code, and
code_cleanup section tags also have the following macros:


	FAIL : Code to insert at error points.  A python exception
should be set prior to this code.  An invocation look like this:

if (error) {
  // Set python exception
  FAIL
}





You can add a semicolon after the macro if it makes your editor
happy.



	CONTEXT : Name of the context variable for this node.  (only
for Ops which have a context, which is discussed elsewhere)





Finally the tag code and code_cleanup have macros to
pass the inputs and output names.  These are name INPUT_{i} and
OUTPUT_{i} where i is the 0-based index position in the input
and output arrays respectively.




Support code

Certain section are limited in what you can place in them due to
semantic and syntactic restrictions of the C++ language.  Most of
these restrictions apply to the tags that end in _struct.

When we defined the VectorTimesVector op without using the COp
class, we had to make a distinction between two types of support_code
: the support code that was apply-specific and the support code that
wasn’t. The apply-specific code was defined in the
c_support_code_apply() method and the elements defined in that
code (global variables and functions) had to include the name of the
Apply node in their own names to avoid conflicts between the different
versions of the apply-specific code. The code that wasn’t
apply-specific was simply defined in the c_support_code() method.

To make indentifiers that include the Apply node name use the
APPLY_SPECIFIC(str) macro. In the above example, this macro is
used when defining the functions vector_elemwise_mult() and
vector_times_vector() as well as when calling function
vector_elemwise_mult() from inside vector_times_vector().

When using the COp class, we still have to make the distinction
between C code for each of the methods of a C class. These sections of
code are separated by #section <tag> markers. The tag determines
the name of the method this C code applies to with the rule that
<tag> applies to c_<tag>. Unknown tags are an error and will be
reported. Duplicate tags will be merged together in the order the
appear in the C files.

The rules for knowing if where a piece of code should be put can be
sometimes tricky.  The key thing to remember is that things that can
be shared between instances of the op should be apply-agnostic and go
into a section which does not end in _apply or _struct.  The
distinction of _apply and _struct mostly hinghes on how you
want to manange the lifetime of the object.  Note that to use an
apply-specific object, you have to be in a apply-specific section, so
some portions of the code that might seem apply-agnostic may still be
apply-specific because of the data they use (this does not include
arguments).

In the above example, the function vector_same_shape() is
apply-agnostic because it uses none of the macros defined by the class
COp and it doesn’t rely on any apply-specific code. The function
vector_elemwise_mult() is apply-specific because it uses the
macros defined by COp. Finally, the function
vector_times_vector() is apply-specific because it uses those same
macros and also because it calls vector_elemwise_mult() which is
an apply-specific function.






Final Note

This tutorial focuses on providing C implementations to ops that manipulate
Theano tensors. For more information about other Theano types, you can refer
to the section Alternate Theano Types.
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Python Memory Management

One of the major challenges in writing (somewhat) large-scale Python
programs is to keep memory usage at a minimum. However, managing memory in
Python is easy—if you just don’t care. Python allocates memory
transparently, manages objects using a reference count system, and frees
memory when an object’s reference count falls to zero. In theory, it’s
swell. In practice, you need to know a few things about Python memory
management to get a memory-efficient program running. One of the things you
should know, or at least get a good feel about, is the sizes of basic
Python objects. Another thing is how Python manages its memory internally.

So let us begin with the size of basic objects. In Python, there’s not a
lot of primitive data types: there are ints, longs (an unlimited
precision version of ints), floats (which are doubles), tuples, strings,
lists, dictionaries, and classes.


Basic Objects

What is the size of int? A programmer with a C or C++ background will
probably guess that the size of a machine-specific int is something
like 32 bits, maybe 64; and that therefore it occupies at most 8 bytes. But
is that so in Python?

Let us first write a function that shows the sizes of objects (recursively
if necessary):

import sys

def show_sizeof(x, level=0):

    print "\t" * level, x.__class__, sys.getsizeof(x), x

    if hasattr(x, '__iter__'):
        if hasattr(x, 'items'):
            for xx in x.items():
                show_sizeof(xx, level + 1)
        else:
            for xx in x:
                show_sizeof(xx, level + 1)





We can now use the function to inspect the sizes of the different basic
data types:

show_sizeof(None)
show_sizeof(3)
show_sizeof(2**63)
show_sizeof(102947298469128649161972364837164)
show_sizeof(918659326943756134897561304875610348756384756193485761304875613948576297485698417)





If you have a 32-bit 2.7x Python, you’ll see:

8 None
12 3
22 9223372036854775808
28 102947298469128649161972364837164
48 918659326943756134897561304875610348756384756193485761304875613948576297485698417





and if you have a 64-bit 2.7x Python, you’ll see:

16 None
24 3
36 9223372036854775808
40 102947298469128649161972364837164
60 918659326943756134897561304875610348756384756193485761304875613948576297485698417





Let us focus on the 64-bit version (mainly because that’s what we need the
most often in our case). None takes 16 bytes. int takes 24 bytes,
three times as much memory as a C int64_t, despite being some kind of
“machine-friendly” integer. Long integers (unbounded precision), used to
represent integers larger than 263-1, have a minimum size of 36
bytes. Then it grows linearly in the logarithm of the integer represented.

Python’s floats are implementation-specific but seem to be C doubles.
However, they do not eat up only 8 bytes:

show_sizeof(3.14159265358979323846264338327950288)





Outputs

16 3.14159265359





on a 32-bit platform and

24 3.14159265359





on a 64-bit platform. That’s again, three times the size a C programmer
would expect. Now, what about strings?

show_sizeof("")
show_sizeof("My hovercraft is full of eels")





outputs, on a 32 bit platform:

21
50 My hovercraft is full of eels





and

37
66 My hovercraft is full of eels





An empty string costs 37 bytes in a 64-bit environment! Memory used
by string then linearly grows in the length of the (useful) string.

*
* *

Other structures commonly used, tuples, lists, and dictionaries are
worthwhile to examine. Lists (which are implemented as array
lists [http://en.wikipedia.org/wiki/Dynamic_array], not as linked
lists [http://en.wikipedia.org/wiki/Linked_list], with everything it
entails [http://en.wikipedia.org/wiki/Dynamic_array#Performance]) are
arrays of references to Python objects, allowing them to be
heterogeneous. Let us look at our sizes:

show_sizeof([])
show_sizeof([4, "toaster", 230.1])





outputs

32 []
44 [4, 'toaster', 230.1]





on a 32-bit platform and

72 []
96 [4, 'toaster', 230.1]





on a 64-bit platform. An empty list eats up 72 bytes. The size of an
empty, 64-bit C++ std::list() is only 16 bytes, 4-5 times less. What
about tuples? (and dictionaries?):

show_sizeof({})
show_sizeof({'a':213, 'b':2131})





outputs, on a 32-bit box

136 {}
 136 {'a': 213, 'b': 2131}
        32 ('a', 213)
                22 a
                12 213
        32 ('b', 2131)
                22 b
                12 2131





and

280 {}
 280 {'a': 213, 'b': 2131}
        72 ('a', 213)
                38 a
                24 213
        72 ('b', 2131)
                38 b
                24 2131





for a 64-bit box.

This last example is particularly interesting because it “doesn’t add up.”
If we look at individual key/value pairs, they take 72 bytes (while their components
take 38+24=62 bytes, leaving 10 bytes for the pair itself), but the
dictionary takes 280 bytes (rather than a strict minimum of 144=72×2
bytes). The dictionary is supposed to be an efficient data structure for
search and the two likely implementations will use more space that strictly
necessary. If it’s some kind of tree, then we should pay the cost of
internal nodes that contain a key and two pointers to children nodes; if
it’s a hash table, then we must have some room with free entries to ensure
good performance.

The (somewhat) equivalent std::map C++ structure takes 48 bytes when
created (that is, empty). An empty C++ string takes 8 bytes (then allocated
size grows linearly the size of the string). An integer takes 4 bytes (32 bits).

*
* *

Why does all this matter? It seems that whether an empty string takes 8
bytes or 37 doesn’t change anything much. That’s true. That’s true until
you need to scale. Then, you need to be really careful about how many
objects you create to limit the quantity of memory your program uses. It is
a problem in real-life applications. However, to devise a really good
strategy about memory management, we must not only consider the sizes of
objects, but how many and in which order they are created. It turns out to
be very important for Python programs. One key element to understand is how
Python allocates its memory internally, which we will discuss next.




Internal Memory Management

To speed-up memory allocation (and reuse) Python uses a number of lists
for small objects. Each list will contain objects of similar size: there
will be a list for objects 1 to 8 bytes in size, one for 9 to 16, etc.
When a small object needs to be created, either we reuse a free block in
the list, or we allocate a new one.

There are some internal details on how Python manages those lists into
blocks, pools, and “arena”: a number of block forms a pool, pools are
gathered into arena, etc., but they’re not very relevant to the point we
want to make (if you really want to know, read Evan Jones’ ideas on how to
improve Python’s memory allocation [http://www.evanjones.ca/memoryallocator/]). The important point is that
those lists never shrink.

Indeed: if an item (of size x) is deallocated (freed by lack of
reference) its location is not returned to Python’s global memory pool (and
even less to the system), but merely marked as free and added to the free
list of items of size x. The dead object’s location will be reused if
another object of compatible size is needed. If there are no dead objects
available, new ones are created.

If small objects memory is never freed, then the inescapable conclusion is
that, like goldfishes, these small object lists only keep growing, never
shrinking, and that the memory footprint of your application is dominated
by the largest number of small objects allocated at any given point.

*
* *

Therefore, one should work hard to allocate only the number of small
objects necessary for one task, favoring (otherwise unpythonèsque) loops
where only a small number of elements are created/processed rather than
(more pythonèsque) patterns where lists are created using list generation
syntax then processed.

While the second pattern is more à la Python, it is rather the worst
case: you end up creating lots of small objects that will come populate the
small object lists, and even once the list is dead, the dead objects (now
all in the free lists) will still occupy a lot of memory.

*
* *

The fact that the free lists grow does not seem like much of a problem
because the memory it contains is still accessible to the Python program.
But from the OS’s perspective, your program’s size is the total (maximum)
memory allocated to Python. Since Python returns memory to the OS on the
heap (that allocates other objects than small objects) only on Windows, if
you run on Linux, you can only see the total memory used by your program
increase.

*
* *

Let us prove my point using memory_profiler [http://pypi.python.org/pypi/memory_profiler], a Python add-on module
(which depends on the python-psutil package) by Fabian Pedregosa [https://github.com/fabianp] (the module’s github page [https://github.com/fabianp/memory_profiler]). This add-on provides the
decorator @profile that allows one to monitor one specific function
memory usage. It is extremely simple to use. Let us consider this small
program (it makes my point entirely):

import copy
import memory_profiler

@profile
def function():
    x = range(1000000)  # allocate a big list
    y = copy.deepcopy(x)
    del x
    return y

if __name__=="__main__":
    function()





invoking

python -m memory_profiler memory-profile-me.py





prints, on a 64-bit computer

Filename: memory-profile-me.py

Line #    Mem usage    Increment   Line Contents
================================================
     3                             @profile
     4      9.11 MB      0.00 MB   def function():
     5     40.05 MB     30.94 MB       x=range(1000000) # allocate a big list
     6     89.73 MB     49.68 MB       y=copy.deepcopy(x)
     7     82.10 MB     -7.63 MB       del x
     8     82.10 MB      0.00 MB       return y





This small program creates a list with 1,000,000 ints (at 24 bytes each,
for ~24 million bytes) plus a list of references (at 8 bytes each, for ~8
million bytes), for about 30MB. It then deep-copies the object (which
allocates ~50MB, not sure why; a simple copy would allocate only 8MB of
references, plus about 24MB for the objects themselves—so there’s a large
overhead here, maybe Python grew its heap preemptively). Freeing x with
del frees the reference list, kills the associated objects, but lo!,
the amount of memory only goes down by the number of references, because
the list itself is not in a small objects’ list, but on the heap, and the
dead small objects remain in the free list, and not returned to the
interpreter’s global heap.

In this example, we end up with twice the memory allocated, with 82MB,
while only one list necessitating about 30MB is returned. You can see why
it is easy to have memory just increase more or less surprisingly if we’re
not careful.




Pickle

On a related note: is pickle wasteful?

Pickle [http://docs.python.org/library/pickle.html] is the standard way
of (de)serializing Python objects to file. What is its memory footprint?
Does it create extra copies of the data or is it rather smart about it?
Consider this short example:

import memory_profiler
import pickle
import random

def random_string():
    return "".join([chr(64 + random.randint(0, 25)) for _ in xrange(20)])

@profile
def create_file():
    x = [(random.random(),
          random_string(),
          random.randint(0, 2 ** 64))
         for _ in xrange(1000000)]

    pickle.dump(x, open('machin.pkl', 'w'))

@profile
def load_file():
    y = pickle.load(open('machin.pkl', 'r'))
    return y

if __name__=="__main__":
    create_file()
    #load_file()





With one invocation to profile the creation of the pickled data, and one
invocation to re-read it (you comment out the function not to be
called). Using memory_profiler, the creation uses a lot of memory:

Filename: test-pickle.py

Line #    Mem usage    Increment   Line Contents
================================================
     8                             @profile
     9      9.18 MB      0.00 MB   def create_file():
    10      9.33 MB      0.15 MB       x=[ (random.random(),
    11                                      random_string(),
    12                                      random.randint(0,2**64))
    13    246.11 MB    236.77 MB           for _ in xrange(1000000) ]
    14
    15    481.64 MB    235.54 MB       pickle.dump(x,open('machin.pkl','w'))





and re-reading a bit less:

Filename: test-pickle.py

Line #    Mem usage    Increment   Line Contents
================================================
    18                             @profile
    19      9.18 MB      0.00 MB   def load_file():
    20    311.02 MB    301.83 MB       y=pickle.load(open('machin.pkl','r'))
    21    311.02 MB      0.00 MB       return y





So somehow, pickling is very bad for memory consumption. The initial list
takes up more or less 230MB, but pickling it creates an extra 230-something
MB worth of memory allocation.

Unpickling, on the other hand, seems fairly efficient. It does create more
memory than the original list (300MB instead of 230-something) but it does
not double the quantity of allocated memory.

Overall, then, (un)pickling should be avoided for memory-sensitive
applications. What are the alternatives? Pickling preserves all the
structure of a data structure, so you can recover it exactly from the
pickled file at a later time. However, that might not always be needed. If
the file is to contain a list as in the example above, then maybe a simple
flat, text-based, file format is in order. Let us see what it gives.

A naïve implementation would give:

import memory_profiler
import random
import pickle

def random_string():
    return "".join([chr(64 + random.randint(0, 25)) for _ in xrange(20)])

@profile
def create_file():
    x = [(random.random(),
          random_string(),
          random.randint(0, 2 ** 64))
         for _ in xrange(1000000) ]

    f = open('machin.flat', 'w')
    for xx in x:
        print >>f, xx
    f.close()

@profile
def load_file():
    y = []
    f = open('machin.flat', 'r')
    for line in f:
        y.append(eval(line))
    f.close()
    return y

if __name__== "__main__":
    create_file()
    #load_file()





Creating the file:

Filename: test-flat.py

Line #    Mem usage    Increment   Line Contents
================================================
     8                             @profile
     9      9.19 MB      0.00 MB   def create_file():
    10      9.34 MB      0.15 MB       x=[ (random.random(),
    11                                      random_string(),
    12                                      random.randint(0, 2**64))
    13    246.09 MB    236.75 MB           for _ in xrange(1000000) ]
    14
    15    246.09 MB      0.00 MB       f=open('machin.flat', 'w')
    16    308.27 MB     62.18 MB       for xx in x:
    17                                     print >>f, xx





and reading the file back:

Filename: test-flat.py

Line #    Mem usage    Increment   Line Contents
================================================
    20                             @profile
    21      9.19 MB      0.00 MB   def load_file():
    22      9.34 MB      0.15 MB       y=[]
    23      9.34 MB      0.00 MB       f=open('machin.flat', 'r')
    24    300.99 MB    291.66 MB       for line in f:
    25    300.99 MB      0.00 MB           y.append(eval(line))
    26    301.00 MB      0.00 MB       return y





Memory consumption on writing is now much better. It still creates a lot of
temporary small objects (for 60MB’s worth), but it’s not doubling memory
usage. Reading is comparable (using only marginally less memory).

This particular example is trivial but it generalizes to strategies where
you don’t load the whole thing first then process it but rather read a few
items, process them, and reuse the allocated memory. Loading data to a
Numpy array, for example, one could first create the Numpy array, then read
the file line by line to fill the array: this allocates one copy of the
whole data. Using pickle, you would allocate the whole data (at least)
twice: once by pickle, and once through Numpy.

Or even better yet: use Numpy (or PyTables) arrays. But that’s a different
topic. In the mean time, you can have a look at loading and saving [http://deeplearning.net/software/theano/tutorial/loading_and_saving.html]
another tutorial in the Theano/doc/tutorial directory.

*
* *

Python design goals are radically different than, say, C design goals.
While the latter is designed to give you good control on what you’re doing
at the expense of more complex and explicit programming, the former is
designed to let you code rapidly while hiding most (if not all) of the
underlying implementation details. While this sounds nice, in a production
environment ignoring the implementation inefficiencies of a language can
bite you hard, and sometimes when it’s too late. I think that having a good
feel of how inefficient Python is with memory management (by design!) will
play an important role in whether or not your code meets production
requirements, scales well, or, on the contrary, will be a burning hell of
memory.
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Multi cores support in Theano


BLAS operation

BLAS is an interface for some mathematic operations between two
vectors, a vector and a matrix or two matrices (e.g. the dot product
between vector/matrix and matrix/matrix). Many different
implementations of that interface exist and some of them are
parallelized.

Theano tries to use that interface as frequently as possible for
performance reasons. So if Theano links to a parallel implementation,
those operations will run in parallel in Theano.

The most frequent way to control the number of threads used is via the
OMP_NUM_THREADS environment variable. Set it to the number of
threads you want to use before starting the Python process. Some BLAS
implementations support other environment variables.

To test if you BLAS supports OpenMP/Multiple cores, you can use the theano/misc/check_blas.py script from the command line like this:

OMP_NUM_THREADS=1 python theano/misc/check_blas.py -q
OMP_NUM_THREADS=2 python theano/misc/check_blas.py -q








Parallel element wise ops with OpenMP

Because element wise ops work on every tensor entry independently they
can be easily parallelized using OpenMP.

To use OpenMP you must set the openmp flag
to True.

You can use the flag openmp_elemwise_minsize to set the minimum
tensor size for which the operation is parallelized because for short
tensors using OpenMP can slow down the operation. The default value is
200000.

For simple (fast) operations you can obtain a speed-up with very large
tensors while for more complex operations you can obtain a good speed-up
also for smaller tensors.

There is a script elemwise_openmp_speedup.py in theano/misc/
which you can use to tune the value of openmp_elemwise_minsize for
your machine.  The script runs two elemwise operations (a fast one and
a slow one) for a vector of size openmp_elemwise_minsize with and
without OpenMP and shows the time difference between the cases.

The only way to control the number of threads used is via the
OMP_NUM_THREADS environment variable. Set it to the number of
threads you want to use before starting the Python process. You can
test this with this command:

OMP_NUM_THREADS=2 python theano/misc/elemwise_openmp_speedup.py
#The output

Fast op time without openmp 0.000533s with openmp 0.000474s speedup 1.12
Slow op time without openmp 0.002987s with openmp 0.001553s speedup 1.92











          

      

      

    


    
         Copyright 2008--2015, LISA lab.
      Last updated on Mar 27, 2015.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Theano 0.7 documentation 
 
      

    


    
      
          
            
  
Library Documentation

This documentation covers Theano module-wise.  This is suited to finding the
Types and Ops that you can use to build and compile expression graphs.



	tensor  – Types and Ops for Symbolic numpy

	gradient – Symbolic Differentiation

	config – Theano Configuration

	printing – Graph Printing and Symbolic Print Statement

	compile – Transforming Expression Graphs to Functions

	sparse – Symbolic Sparse Matrices

	sparse –  Sparse Op

	sparse.sandbox –  Sparse Op Sandbox

	scalar – Symbolic Scalar Types, Ops [doc TODO]

	gof – Theano Internals [doc TODO]

	scan – Looping in Theano

	sandbox – Experimental Code

	typed_list – Typed List





There are also some top-level imports that you might find more convenient:


	
theano.function(...)

	Alias for function.function()






	
theano.function_dump(...)

	Alias for theano.compile.function.function_dump()






	
theano.shared(...)

	Alias for theano.compile.sharedvalue.shared()






	
class theano.Param

	Alias for function.Param






	
theano.dot(x, y)

	Works like tensor.dot() for both sparse and dense matrix products






	
theano.clone(output, replace=None, strict=True, share_inputs=True, copy_inputs=<object object at 0x7f2d94960f70>)

	Function that allows replacing subgraphs of a computational
graph. It returns a copy of the initial subgraph with the corresponding
substitutions.





	Parameters:	
	outputs – Theano expression that represents the computational
graph

	replace (dict) – dictionary describing which subgraphs should be
replaced by what

	share_inputs (bool) – If True, use the same inputs (and shared variables)
as the original graph. If False, clone them. Note that cloned
shared variables still use the same underlying storage, so they
will always have the same value.














	
theano.sparse_grad(var)

	This function return a new variable whose gradient will be
stored in a sparse format instead of dense.

Currently only variable created by AdvancedSubtensor1 is supported.
i.e. a_tensor_var[an_int_vector].


New in version 0.6rc4.
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tensor  – Types and Ops for Symbolic numpy

Theano’s strength is in expressing symbolic calculations involving tensors.
There are many types of symbolic expressions for tensors.
They are grouped into the following sections:



	Basic Tensor Functionality

	nnet  – Ops related to neural networks

	raw_random – Low-level random numbers

	shared_randomstreams – Friendly random numbers

	signal – Signal Processing

	tensor.utils –  Tensor Utils

	tensor.extra_ops –  Tensor Extra Ops

	tensor.io –  Tensor IO Ops

	tensor.slinalg –  Linear Algebra Ops Using Scipy

	tensor.nlinalg –  Linear Algebra Ops Using Numpy
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Basic Tensor Functionality

Theano supports any kind of Python object, but its focus is support for
symbolic matrix expressions.  When you type,

>>> x = T.fmatrix()





the x is a TensorVariable instance.
The T.fmatrix object itself is an instance of TensorType.
Theano knows what type of variable x is because x.type
points back to T.fmatrix.

This chapter explains the various ways of creating tensor variables,
the attributes and methods of TensorVariable and TensorType,
and various basic symbolic math and arithmetic that Theano supports for
tensor variables.


Creation

Theano provides a list of predefined tensor types that can be used
to create a tensor variables.  Variables can be named to facilitate debugging,
and all of these constructors accept an optional name argument.
For example, the following each produce a TensorVariable instance that stands
for a 0-dimensional ndarray of integers with the name 'myvar':

>>> x = scalar('myvar', dtype='int32')
>>> x = iscalar('myvar')
>>> x = TensorType(dtype='int32', broadcastable=())('myvar')






Constructors with optional dtype

These are the simplest and often-preferred methods for creating symbolic
variables in your code.  By default, they produce floating-point variables
(with dtype determined by config.floatX, see floatX) so if you use
these constructors it is easy to switch your code between different levels of
floating-point precision.


	
theano.tensor.scalar(name=None, dtype=config.floatX)

	Return a Variable for a 0-dimensional ndarray






	
theano.tensor.vector(name=None, dtype=config.floatX)

	Return a Variable for a 1-dimensional ndarray






	
theano.tensor.row(name=None, dtype=config.floatX)

	Return a Variable for a 2-dimensional ndarray
in which the number of rows is guaranteed to be 1.






	
theano.tensor.col(name=None, dtype=config.floatX)

	Return a Variable for a 2-dimensional ndarray
in which the number of columns is guaranteed to be 1.






	
theano.tensor.matrix(name=None, dtype=config.floatX)

	Return a Variable for a 2-dimensional ndarray






	
theano.tensor.tensor3(name=None, dtype=config.floatX)

	Return a Variable for a 3-dimensional ndarray






	
theano.tensor.tensor4(name=None, dtype=config.floatX)

	Return a Variable for a 4-dimensional ndarray








All Fully-Typed Constructors

The following TensorType instances are provided in the theano.tensor module.
They are all callable, and accept an optional name argument.  So for example:

from theano.tensor import *

x = dmatrix()        # creates one Variable with no name
x = dmatrix('x')     # creates one Variable with name 'x'
xyz = dmatrix('xyz') # creates one Variable with name 'xyz'














	Constructor
	dtype
	ndim
	shape
	broadcastable




	bscalar
	int8
	0
	()
	()


	bvector
	int8
	1
	(?,)
	(False,)


	brow
	int8
	2
	(1,?)
	(True, False)


	bcol
	int8
	2
	(?,1)
	(False, True)


	bmatrix
	int8
	2
	(?,?)
	(False, False)


	btensor3
	int8
	3
	(?,?,?)
	(False, False, False)


	btensor4
	int8
	4
	(?,?,?,?)
	(False, False, False, False)


	wscalar
	int16
	0
	()
	()


	wvector
	int16
	1
	(?,)
	(False,)


	wrow
	int16
	2
	(1,?)
	(True, False)


	wcol
	int16
	2
	(?,1)
	(False, True)


	wmatrix
	int16
	2
	(?,?)
	(False, False)


	wtensor3
	int16
	3
	(?,?,?)
	(False, False, False)


	wtensor4
	int16
	4
	(?,?,?,?)
	(False, False, False, False)


	iscalar
	int32
	0
	()
	()


	ivector
	int32
	1
	(?,)
	(False,)


	irow
	int32
	2
	(1,?)
	(True, False)


	icol
	int32
	2
	(?,1)
	(False, True)


	imatrix
	int32
	2
	(?,?)
	(False, False)


	itensor3
	int32
	3
	(?,?,?)
	(False, False, False)


	itensor4
	int32
	4
	(?,?,?,?)
	(False, False, False, False)


	lscalar
	int64
	0
	()
	()


	lvector
	int64
	1
	(?,)
	(False,)


	lrow
	int64
	2
	(1,?)
	(True, False)


	lcol
	int64
	2
	(?,1)
	(False, True)


	lmatrix
	int64
	2
	(?,?)
	(False, False)


	ltensor3
	int64
	3
	(?,?,?)
	(False, False, False)


	ltensor4
	int64
	4
	(?,?,?,?)
	(False, False, False, False)


	dscalar
	float64
	0
	()
	()


	dvector
	float64
	1
	(?,)
	(False,)


	drow
	float64
	2
	(1,?)
	(True, False)


	dcol
	float64
	2
	(?,1)
	(False, True)


	dmatrix
	float64
	2
	(?,?)
	(False, False)


	dtensor3
	float64
	3
	(?,?,?)
	(False, False, False)


	dtensor4
	float64
	4
	(?,?,?,?)
	(False, False, False, False)


	fscalar
	float32
	0
	()
	()


	fvector
	float32
	1
	(?,)
	(False,)


	frow
	float32
	2
	(1,?)
	(True, False)


	fcol
	float32
	2
	(?,1)
	(False, True)


	fmatrix
	float32
	2
	(?,?)
	(False, False)


	ftensor3
	float32
	3
	(?,?,?)
	(False, False, False)


	ftensor4
	float32
	4
	(?,?,?,?)
	(False, False, False, False)


	cscalar
	complex64
	0
	()
	()


	cvector
	complex64
	1
	(?,)
	(False,)


	crow
	complex64
	2
	(1,?)
	(True, False)


	ccol
	complex64
	2
	(?,1)
	(False, True)


	cmatrix
	complex64
	2
	(?,?)
	(False, False)


	ctensor3
	complex64
	3
	(?,?,?)
	(False, False, False)


	ctensor4
	complex64
	4
	(?,?,?,?)
	(False, False, False, False)


	zscalar
	complex128
	0
	()
	()


	zvector
	complex128
	1
	(?,)
	(False,)


	zrow
	complex128
	2
	(1,?)
	(True, False)


	zcol
	complex128
	2
	(?,1)
	(False, True)


	zmatrix
	complex128
	2
	(?,?)
	(False, False)


	ztensor3
	complex128
	3
	(?,?,?)
	(False, False, False)


	ztensor4
	complex128
	4
	(?,?,?,?)
	(False, False, False, False)








Plural Constructors

There are several constructors that can produce multiple variables at once.
These are not frequently used in practice, but often used in tutorial examples to save space!


	
iscalars, lscalars, fscalars, dscalars

	Return one or more scalar variables.






	
ivectors, lvectors, fvectors, dvectors

	Return one or more vector variables.






	
irows, lrows, frows, drows

	Return one or more row variables.






	
icols, lcols, fcols, dcols

	Return one or more col variables.






	
imatrices, lmatrices, fmatrices, dmatrices

	Return one or more matrix variables.





Each of these plural constructors accepts
an integer or several strings. If an integer is provided, the method
will return that many Variables and if strings are provided, it will
create one Variable for each string, using the string as the Variable’s
name. For example:

from theano.tensor import *

x, y, z = dmatrices(3) # creates three matrix Variables with no names
x, y, z = dmatrices('x', 'y', 'z') # creates three matrix Variables named 'x', 'y' and 'z'








Custom tensor types

If you would like to construct a tensor variable with a non-standard
broadcasting pattern, or a larger number of dimensions you’ll need to create
your own TensorType instance.  You create such an instance by passing
the dtype and broadcasting pattern to the constructor.  For example, you
can create your own 5-dimensional tensor type

>>> dtensor5 = TensorType('float64', (False,)*5)
>>> x = dtensor5()
>>> z = dtensor5('z')





You can also redefine some of the provided types and they will interact
correctly:

>>> my_dmatrix = TensorType('float64', (False,)*2)
>>> x = my_dmatrix()       # allocate a matrix variable
>>> my_dmatrix == dmatrix
True





See TensorType for more information about creating new types of
Tensor.




Converting from Python Objects

Another way of creating a TensorVariable (a TensorSharedVariable to be
precise) is by calling shared()

x = shared(numpy.random.randn(3,4))





This will return a shared variable whose .value is
a numpy ndarray.  The number of dimensions and dtype of the Variable are
inferred from the ndarray argument.  The argument to shared will not be
copied, and subsequent changes will be reflected in x.value.

For additional information, see the shared() documentation.

Finally, when you use a numpy ndarry or a Python number together with
TensorVariable instances in arithmetic expressions, the result is a
TensorVariable. What happens to the ndarray or the number?
Theano requires that the inputs to all expressions be Variable instances, so
Theano automatically wraps them in a TensorConstant.


Note

Theano makes a copy of any ndarray that you use in an expression, so
subsequent
changes to that ndarray will not have any effect on the Theano expression.



For numpy ndarrays the dtype is given, but the broadcastable pattern must be
inferred.  The TensorConstant is given a type with a matching dtype,
and a broadcastable pattern with a True for every shape dimension that is 1.

For python numbers, the broadcastable pattern is () but the dtype must be
inferred.  Python integers are stored in the smallest dtype that can hold
them, so small constants like 1 are stored in a bscalar.
Likewise, Python floats are stored in an fscalar if fscalar suffices to hold
them perfectly, but a dscalar otherwise.


Note

When config.floatX==float32 (see config), then Python floats
are stored instead as single-precision floats.

For fine control of this rounding policy, see
theano.tensor.basic.autocast_float.




	
theano.tensor.as_tensor_variable(x, name=None, ndim=None)

	Turn an argument x into a TensorVariable or TensorConstant.

Many tensor Ops run their arguments through this function as
pre-processing.  It passes through TensorVariable instances, and tries to
wrap other objects into TensorConstant.

When x is a Python number, the dtype is inferred as described above.

When x is a list or tuple it is passed through numpy.asarray

If the ndim argument is not None, it must be an integer and the output
will be broadcasted if necessary in order to have this many dimensions.





	Return type:	TensorVariable or TensorConstant














TensorType and TensorVariable


	
class theano.tensor.TensorType(Type)

	The Type class used to mark Variables that stand for numpy.ndarray
values (numpy.memmap, which is a subclass of numpy.ndarray, is also allowed).
Recalling to the tutorial, the purple box in
the tutorial’s graph-structure figure is an instance of this class.


	
broadcastable

	A tuple of True/False values, one for each dimension.  True in
position ‘i’ indicates that at evaluation-time, the ndarray will have
size 1 in that ‘i’-th dimension.  Such a dimension is called a
broadcastable dimension (see Broadcasting in Theano vs. Numpy).

The broadcastable pattern indicates both the number of dimensions and
whether a particular dimension must have length 1.

Here is a table mapping some broadcastable patterns to what they
mean:







	pattern
	interpretation




	[]
	scalar


	[True]
	1D scalar (vector of length 1)


	[True, True]
	2D scalar (1x1 matrix)


	[False]
	vector


	[False, False]
	matrix


	[False] * n
	nD tensor


	[True, False]
	row (1xN matrix)


	[False, True]
	column (Mx1 matrix)


	[False, True, False]
	A Mx1xP tensor (a)


	[True, False, False]
	A 1xNxP tensor (b)


	[False, False, False]
	A MxNxP tensor (pattern of a + b)





For dimensions in which broadcasting is False, the length of this
dimension can be 1 or more.  For dimensions in which broadcasting is True,
the length of this dimension must be 1.

When two arguments to an element-wise operation (like addition or
subtraction) have a different
number of dimensions, the broadcastable
pattern is expanded to the left, by padding with True. For example,
a vector’s pattern, [False], could be expanded to [True, False], and
would behave like a row (1xN matrix). In the same way, a matrix ([False,
False]) would behave like a 1xNxP tensor ([True, False, False]).

If we wanted to create a type representing a matrix that would
broadcast over the middle dimension of a 3-dimensional tensor when
adding them together, we would define it like this:

>>> middle_broadcaster = TensorType('complex64', [False, True, False])










	
ndim

	The number of dimensions that a Variable’s value will have at
evaluation-time.  This must be known when we are building the
expression graph.






	
dtype

	A string indicating
the numerical type of the ndarray for which a Variable of this Type
is standing.

The dtype attribute of a TensorType instance can be any of the
following strings.








	dtype
	domain
	bits




	'int8'
	signed integer
	8


	'int16'
	signed integer
	16


	'int32'
	signed integer
	32


	'int64'
	signed integer
	64


	'uint8'
	unsigned integer
	8


	'uint16'
	unsigned integer
	16


	'uint32'
	unsigned integer
	32


	'uint64'
	unsigned integer
	64


	'float32'
	floating point
	32


	'float64'
	floating point
	64


	'complex64'
	complex
	64 (two float32)


	'complex128'
	complex
	128 (two float64)










	
__init__(self, dtype, broadcastable)

	If you wish to use a type of tensor which is not already available
(for example, a 5D tensor) you can build an appropriate type by instantiating
TensorType.










TensorVariable


	
class theano.tensor.TensorVariable(Variable, _tensor_py_operators)

	The result of symbolic operations typically have this type.

See _tensor_py_operators for most of the attributes and methods
you’ll want to call.






	
class theano.tensor.TensorConstant(Variable, _tensor_py_operators)

	Python and numpy numbers are wrapped in this type.

See _tensor_py_operators for most of the attributes and methods
you’ll want to call.






	
class theano.tensor.TensorSharedVariable(Variable, _tensor_py_operators)

	This type is returned by shared() when the value to share is a numpy
ndarray.

See _tensor_py_operators for most of the attributes and methods
you’ll want to call.






	
class theano.tensor._tensor_py_operators(object)

	This mix-in class adds convenient attributes, methods, and support
to TensorVariable, TensorConstant and TensorSharedVariable for
Python operators (see Operator Support).


	
type

	A reference to the TensorType instance describing the sort of
values that might be associated with this variable.






	
ndim

	The number of dimensions of this tensor.  Aliased to
TensorType.ndim.






	
dtype

	The numeric type of this tensor. Aliased to
TensorType.dtype.






	
reshape(shape, ndim=None)

	Returns a view of this tensor that has been reshaped as in
numpy.reshape.  If the shape is a Variable argument, then you might
need to use the optional ndim parameter to declare how many elements
the shape has, and therefore how many dimensions the reshaped Variable
will have.

See reshape().






	
dimshuffle(*pattern)

	Returns a view of this tensor with permuted dimensions.  Typically the
pattern will include the integers 0, 1, ... ndim-1, and any number of
‘x’ characters in dimensions where this tensor should be broadcasted.

A few examples of patterns and their effect:



	(‘x’) -> make a 0d (scalar) into a 1d vector

	(0, 1) -> identity for 2d vectors

	(1, 0) -> inverts the first and second dimensions

	(‘x’, 0) -> make a row out of a 1d vector (N to 1xN)

	(0, ‘x’) -> make a column out of a 1d vector (N to Nx1)

	(2, 0, 1) -> AxBxC to CxAxB

	(0, ‘x’, 1) -> AxB to Ax1xB

	(1, ‘x’, 0) -> AxB to Bx1xA

	(1,) -> This remove dimensions 0. It must be a broadcastable dimension (1xA to A)











	
flatten(ndim=1)

	Returns a view of this tensor with ndim dimensions, whose shape for the first
ndim-1 dimensions will be the same as self, and shape in the
remaining dimension will be expanded to fit in all the data from self.

See flatten().






	
ravel()

	return self.flatten(). For NumPy compatibility.






	
T

	Transpose of this tensor.

>>> x = T.zmatrix()
>>> y = 3+.2j * x.T






Note

In numpy and in Theano, the transpose of a vector is exactly the
same vector!  Use reshape or dimshuffle to turn your vector
into a row or column matrix.








	
{any,all}(axis=None, keepdims=False)

	




	
{sum,prod,mean}(axis=None, dtype=None, keepdims=False, acc_dtype=None)

	




	
{var,std,min,max,argmin,argmax}(axis=None, keepdims=False),

	




	
diagonal(offset=0, axis1=0, axis2=1)

	




	
astype(dtype)

	




	
take(indices, axis=None, mode='raise')

	




	
copy()

	




	
norm(L, axis=None)

	




	
nonzero(self, return_matrix=False)

	




	
nonzero_values(self)

	




	
sort(self, axis=-1, kind='quicksort', order=None)

	




	
argsort(self, axis=-1, kind='quicksort', order=None)

	




	
clip(self, a_min, a_max)

	




	
conf()

	




	
repeat(repeats, axis=None)

	




	
round(mode="half_away_from_zero")

	




	
trace()

	




	
get_scalar_constant_value()

	




	
zeros_like(model, dtype=None)

	All the above methods are equivalent to NumPy for Theano on the current tensor.






	
__{abs,neg,lt,le,gt,ge,invert,and,or,add,sub,mul,div,truediv,floordiv}__

	Those elemwise operation are supported via Python syntax.














Shaping and Shuffling

To re-order the dimensions of a variable, to insert or remove broadcastable
dimensions, see _tensor_py_operators.dimshuffle().


	
theano.tensor.shape(x)

	Returns an lvector representing the shape of x.






	
theano.tensor.reshape(x, newshape, ndim=None)

	



	Parameters:	
	x (any TensorVariable (or compatible)) – variable to be reshaped

	newshape (lvector (or compatible)) – the new shape for x

	ndim – optional - the length that newshape‘s value will have.
If this is None, then reshape() will infer it from newshape.






	Return type:	variable with x’s dtype, but ndim dimensions








Note

This function can infer the length of a symbolic newshape in some
cases, but if it cannot and you do not provide the ndim, then this
function will raise an Exception.








	
theano.tensor.shape_padleft(x, n_ones=1)

	Reshape x by left padding the shape with n_ones 1s. Note that all
this new dimension will be broadcastable. To make them non-broadcastable
see the unbroadcast().





	Parameters:	x (any TensorVariable (or compatible)) – variable to be reshaped










	
theano.tensor.shape_padright(x, n_ones=1)

	Reshape x by right padding the shape with n_ones 1s. Note that all
this new dimension will be broadcastable. To make them non-broadcastable
see the unbroadcast().





	Parameters:	x (any TensorVariable (or compatible)) – variable to be reshaped










	
theano.tensor.unbroadcast(x, *axes)

	Make the input impossible to broadcast in the specified axes.
For example, addbroadcast(x, 0) will make the first dimension
of x broadcastable. When performing the function, if the length
of x along that dimension is not 1, a ValueError will be raised.

We apply the opt here not to pollute the graph especially during
the gpu optimization



	x : tensor_like

	Input theano tensor.

	axis : an int or an iterable object such as list or tuple

	
of int values


The dimension along which the tensor x should be unbroadcastable.
if the length of x along these dimensions is not 1,
a ValueError will be raised.









a theano tensor, which is unbroadcastable along the specified dimensions.







	
theano.tensor.addbroadcast(x, *axes)

	Make the input broadcastable in the specified axes.
For example, addbroadcast(x, 0) will make the first dimension of
x broadcastable. When performing the function, if the length of
x along that dimension is not 1, a ValueError will be raised.

We apply the opt here not to pollute the graph especially during
the gpu optimization



	x : tensor_like

	Input theano tensor.

	axis : an int or an iterable object such as list or tuple

	
of int values


The dimension along which the tensor x should be broadcastable.
if the length of x along these dimensions is not 1,
a ValueError will be raised.









a theano tensor, which is broadcastable along the specified dimensions.







	
theano.tensor.patternbroadcast(x, broadcastable)

	Make the input adopt a specific broadcasting pattern.
broadcastable must be iterable. For example,
patternbroadcast(x, (True, False)) will make the first
dimension of x broadcastable and the second dimension
not broadcastable, so x will now be a row.

We apply the opt here not to pollute the graph especially during the gpu
optimization.



	x : tensor_like

	Input theano tensor.

	broadcastable : an iterable object such as list or tuple

	
of bool values


a set of boolean values indicating whether a dimension
should be broadcastable or not.
if the length of x along these dimensions is not 1,
a ValueError will be raised.









a theano tensor, which is unbroadcastable along the specified dimensions.







	
theano.tensor.flatten(x, outdim=1)

	Similar to reshape(), but the shape is inferred from the shape of x.





	Parameters:	
	x (any TensorVariable (or compatible)) – variable to be flattened

	outdim (int) – the number of dimensions in the returned variable






	Return type:	variable with same dtype as x and outdim dimensions




	Returns:	variable with the same shape as x in the leading outdim-1
dimensions, but with all remaining dimensions of x collapsed into
the last dimension.







For example, if we flatten a tensor of shape (2, 3, 4, 5) with flatten(x,
outdim=2), then we’ll have the same (2-1=1) leading dimensions (2,), and the
remaining dimensions are collapsed.  So the output in this example would
have shape (2, 60).






	
theano.tensor.tile(x, reps, ndim=None)

	Construct an array by repeating the input x according to reps
pattern.

Tiles its input according to reps. The length of reps is the
number of dimension of x and contains the number of times to
tile x in each dimension.





	See:	numpy.tile [http://docs.scipy.org/doc/numpy/reference/generated/numpy.tile.html]
documentation for examples.


	See:	theano.tensor.extra_ops.repeat


	Note:	Currently, reps must be a constant, x.ndim and
len(reps) must be equal and, if specified, ndim must be
equal to both.












Creating Tensor


	
theano.tensor.zeros_like(x)

	



	Parameters:	x – tensor that has same shape as output





Returns a tensor filled with 0s that has same shape as x.






	
theano.tensor.ones_like(x)

	



	Parameters:	x – tensor that has same shape as output





Returns a tensor filled with 1s that has same shape as x.






	
theano.tensor.fill(a, b)

	



	Parameters:	
	a – tensor that has same shape as output

	b – theano scalar or value with which you want to fill the output









Create a matrix by filling the shape of a with b






	
theano.tensor.alloc(value, *shape)

	



	Parameters:	
	value – a value with which to fill the output

	shape – the dimensions of the returned array






	Returns:	an N-dimensional tensor initialized by value and having the specified shape.












	
theano.tensor.eye(n, m=None, k=0, dtype=theano.config.floatX)

	



	Parameters:	
	n – number of rows in output (value or theano scalar)

	m – number of columns in output (value or theano scalar)

	k – Index of the diagonal: 0 refers to the main diagonal,
a positive value refers to an upper diagonal, and a
negative value to a lower diagonal. It can be a theano
scalar.






	Returns:	An array where all elements are equal to zero, except for the k-th
diagonal, whose values are equal to one.












	
theano.tensor.identity_like(x)

	



	Parameters:	x – tensor


	Returns:	A tensor of same shape as x that is filled with 0s everywhere
except for the main diagonal, whose values are equal to one. The output
will have same dtype as x.










	
theano.tensor.stack(*tensors)

	Return a Tensor representing for the arguments all stacked up into a single Tensor.
(of 1 rank greater).





	Parameters:	tensors – one or more tensors of the same rank


	Returns:	A tensor such that rval[0] == tensors[0], rval[1] == tensors[1], etc.





>>> x0 = T.scalar()
>>> x1 = T.scalar()
>>> x2 = T.scalar()
>>> x = T.stack(x0, x1, x2)
>>> x.ndim # x is a vector of length 3.
1










	
theano.tensor.concatenate(tensor_list, axis=0)

	



	Parameters:	
	tensor_list (a list or tuple of Tensors that all have the same shape in the axes
not specified by the axis argument.) – one or more Tensors to be concatenated together into one.

	axis (literal or symbolic integer) – Tensors will be joined along this axis, so they may have different
shape[axis]









>>> x0 = T.fmatrix()
>>> x1 = T.ftensor3()
>>> x2 = T.fvector()
>>> x = T.concatenate([x0, x1[0], T.shape_padright(x2)], axis=1)
>>> x.ndim
2










	
theano.tensor.stacklists(tensor_list)

	



	Parameters:	tensor_list (an iterable that contains either tensors or other
iterables of the same type as tensor_list (in other words, this
is a tree whose leaves are tensors).) – tensors to be stacked together.





Recursively stack lists of tensors to maintain similar structure.

This function can create a tensor from a shaped list of scalars:

>>> from theano.tensor import stacklists, scalars, matrices
>>> from theano import function
>>> a, b, c, d = scalars('abcd')
>>> X = stacklists([[a, b], [c, d]])
>>> f = function([a, b, c, d], X)
>>> f(1, 2, 3, 4)
array([[ 1.,  2.],
       [ 3.,  4.]])





We can also stack arbitrarily shaped tensors. Here we stack matrices into
a 2 by 2 grid:

>>> from numpy import ones
>>> a, b, c, d = matrices('abcd')
>>> X = stacklists([[a, b], [c, d]])
>>> f = function([a, b, c, d], X)
>>> x = ones((4, 4), 'float32')
>>> f(x, x, x, x).shape
(2, 2, 4, 4)










	
theano.tensor.basic.choose(a, choices, out=None, mode='raise')

	Construct an array from an index array and a set of arrays to choose from.

First of all, if confused or uncertain, definitely look at the Examples -
in its full generality, this function is less simple than it might seem
from the following code description (below ndi = numpy.lib.index_tricks):

np.choose(a,c) == np.array([c[a[I]][I] for I in ndi.ndindex(a.shape)]).

But this omits some subtleties. Here is a fully general summary:

Given an index array (a) of integers and a sequence of n arrays
(choices), a and each choice array are first broadcast, as necessary,
to arrays of a common shape; calling these Ba and
Bchoices[i], i = 0,...,n-1 we have that, necessarily,
Ba.shape == Bchoices[i].shape for each i.
Then, a new array with shape Ba.shape is created as follows:


	if mode=raise (the default), then, first of all, each element of a
(and thus Ba) must be in the range [0, n-1]; now, suppose that
i (in that range) is the value at the (j0, j1, ..., jm) position in Ba -
then the value at the same position in the new array is the value in
Bchoices[i] at that same position;

	if mode=wrap, values in a (and thus Ba) may be any (signed) integer;
modular arithmetic is used to map integers outside the range [0, n-1]
back into that range; and then the new array is constructed as above;

	if mode=clip, values in a (and thus Ba) may be any (signed) integer;
negative integers are mapped to 0; values greater than n-1 are mapped
to n-1; and then the new array is constructed as above.







	Parameter:	a - int array
This array must contain integers in [0, n-1], where n is the number of
choices, unless mode=wrap or mode=clip, in which cases any integers
are permissible.


	Parameter:	choices - sequence of arrays
Choice arrays. a and all of the choices must be broadcastable to
the same shape. If choices is itself an array (not recommended),
then its outermost dimension (i.e., the one corresponding to
choices.shape[0]) is taken as defining the sequence.


	Parameter:	out - array, optional
If provided, the result will be inserted into this array.
It should be of the appropriate shape and dtype.


	Parameter:	mode - {raise (default), wrap, clip}, optional
Specifies how indices outside [0, n-1] will be treated:
raise : an exception is raised
wrap : value becomes value mod n
clip : values < 0 are mapped to 0, values > n-1 are mapped to n-1


	Returns:	merged_array - array
The merged result.


	Raises:	ValueError - shape mismatch
If a and each choice array are not all broadcastable to the same shape.












Reductions


	
theano.tensor.max(x, axis=None, keepdims=False)

	



	Parameter:	x -  symbolic Tensor (or compatible)


	Parameter:	axis - axis or axes along which to compute the maximum


	Parameter:	keepdims - (boolean) If this is set to True, the axes which are reduced are
left in the result as dimensions with size one. With this option, the result
will broadcast correctly against the original tensor.


	Returns:	maximum of x along axis






	axis can be:

	
	None - in which case the maximum is computed along all axes (like numpy)

	an int - computed along this axis

	a list of ints - computed along these axes












	
theano.tensor.argmax(x, axis=None, keepdims=False)

	



	Parameter:	x - symbolic Tensor (or compatible)


	Parameter:	axis - axis along which to compute the index of the maximum


	Parameter:	keepdims - (boolean) If this is set to True, the axis which is reduced is
left in the result as a dimension with size one. With this option, the result
will broadcast correctly against the original tensor.


	Returns:	the index of the maximum value along a given axis






	if axis=None, Theano 0.5rc1 or later: argmax over the flattened tensor (like numpy)

	older: then axis is assumed to be ndim(x)-1








	
theano.tensor.max_and_argmax(x, axis=None, keepdims=False)

	



	Parameter:	x - symbolic Tensor (or compatible)


	Parameter:	axis - axis along which to compute the maximum and its index


	Parameter:	keepdims - (boolean) If this is set to True, the axis which is reduced is
left in the result as a dimension with size one. With this option, the result
will broadcast correctly against the original tensor.


	Returns:	the maxium value along a given axis and its index.






	if axis=None, Theano 0.5rc1 or later: max_and_argmax over the flattened tensor (like numpy)

	older: then axis is assumed to be ndim(x)-1








	
theano.tensor.min(x, axis=None, keepdims=False)

	



	Parameter:	x -  symbolic Tensor (or compatible)


	Parameter:	axis - axis or axes along which to compute the minimum


	Parameter:	keepdims - (boolean) If this is set to True, the axes which are reduced are
left in the result as dimensions with size one. With this option, the result
will broadcast correctly against the original tensor.


	Returns:	minimum of x along axis






	axis can be:

	
	None - in which case the minimum is computed along all axes (like numpy)

	an int - computed along this axis

	a list of ints - computed along these axes












	
theano.tensor.argmin(x, axis=None, keepdims=False)

	



	Parameter:	x - symbolic Tensor (or compatible)


	Parameter:	axis - axis along which to compute the index of the minimum


	Parameter:	keepdims - (boolean) If this is set to True, the axes which are reduced are
left in the result as dimensions with size one. With this option, the result
will broadcast correctly against the original tensor.


	Returns:	the index of the minimum value along a given axis






	if axis=None, Theano 0.5rc1 or later: argmin over the flattened tensor (like numpy)

	older: then axis is assumed to be ndim(x)-1








	
theano.tensor.sum(x, axis=None, dtype=None, keepdims=False, acc_dtype=None)

	



	Parameter:	x -  symbolic Tensor (or compatible)




	Parameter:	axis - axis or axes along which to compute the sum




	Parameter:	dtype - The dtype of the returned tensor.
If None, then we use the default dtype which is the same as
the input tensor’s dtype except when:


	the input dtype is a signed integer of precision < 64 bit, in
which case we use int64

	the input dtype is an unsigned integer of precision < 64 bit, in
which case we use uint64



This default dtype does _not_ depend on the value of “acc_dtype”.




	Parameter:	keepdims - (boolean) If this is set to True, the axes which are reduced are
left in the result as dimensions with size one. With this option, the result
will broadcast correctly against the original tensor.




	Parameter:	acc_dtype -  The dtype of the internal accumulator.
If None (default), we use the dtype in the list below,
or the input dtype if its precision is higher:


	for int dtypes, we use at least int64;

	for uint dtypes, we use at least uint64;

	for float dtypes, we use at least float64;

	for complex dtypes, we use at least complex128.






	Returns:	sum of x along axis








	axis can be:

	
	None - in which case the sum is computed along all axes (like numpy)

	an int - computed along this axis

	a list of ints - computed along these axes












	
theano.tensor.prod(x, axis=None, dtype=None, keepdims=False, acc_dtype=None, no_zeros_in_input=False)

	



	Parameter:	x -  symbolic Tensor (or compatible)




	Parameter:	axis - axis or axes along which to compute the product




	Parameter:	dtype - The dtype of the returned tensor.
If None, then we use the default dtype which is the same as
the input tensor’s dtype except when:


	the input dtype is a signed integer of precision < 64 bit, in
which case we use int64

	the input dtype is an unsigned integer of precision < 64 bit, in
which case we use uint64



This default dtype does _not_ depend on the value of “acc_dtype”.




	Parameter:	keepdims - (boolean) If this is set to True, the axes which are reduced are
left in the result as dimensions with size one. With this option, the result
will broadcast correctly against the original tensor.




	Parameter:	acc_dtype -  The dtype of the internal accumulator.
If None (default), we use the dtype in the list below,
or the input dtype if its precision is higher:


	for int dtypes, we use at least int64;

	for uint dtypes, we use at least uint64;

	for float dtypes, we use at least float64;

	for complex dtypes, we use at least complex128.






	Parameter:	no_zeros_in_input - The grad of prod is complicated
as we need to handle 3 different cases: without zeros in the
input reduced group, with 1 zero or with more zeros.

This could slow you down, but more importantly, we currently
don’t support the second derivative of the 3 cases. So you
cannot take the second derivative of the default prod().

To remove the handling of the special cases of 0 and so get
some small speed up and allow second derivative set
no_zeros_in_inputs to True. It defaults to False.

It is the user responsibility to make sure there are no zeros
in the inputs. If there are, the grad will be wrong.




	Returns:	product of every term in x along axis








	axis can be:

	
	None - in which case the sum is computed along all axes (like numpy)

	an int - computed along this axis

	a list of ints - computed along these axes












	
theano.tensor.mean(x, axis=None, dtype=None, keepdims=False, acc_dtype=None)

	



	Parameter:	x -  symbolic Tensor (or compatible)


	Parameter:	axis - axis or axes along which to compute the mean


	Parameter:	dtype - The dtype to cast the result of the inner summation into.
For instance, by default, a sum of a float32 tensor will be
done in float64 (acc_dtype would be float64 by default),
but that result will be casted back in float32.


	Parameter:	keepdims - (boolean) If this is set to True, the axes which are reduced are
left in the result as dimensions with size one. With this option, the result
will broadcast correctly against the original tensor.


	Parameter:	acc_dtype -  The dtype of the internal accumulator of the
inner summation. This will not necessarily be the dtype of the
output (in particular if it is a discrete (int/uint) dtype, the
output will be in a float type).  If None, then we use the same
rules as sum().


	Returns:	mean value of x along axis






	axis can be:

	
	None - in which case the mean is computed along all axes (like numpy)

	an int - computed along this axis

	a list of ints - computed along these axes












	
theano.tensor.var(x, axis=None, keepdims=False)

	



	Parameter:	x -  symbolic Tensor (or compatible)


	Parameter:	axis - axis or axes along which to compute the variance


	Parameter:	keepdims - (boolean) If this is set to True, the axes which are reduced are
left in the result as dimensions with size one. With this option, the result
will broadcast correctly against the original tensor.


	Returns:	variance of x along axis






	axis can be:

	
	None - in which case the variance is computed along all axes (like numpy)

	an int - computed along this axis

	a list of ints - computed along these axes












	
theano.tensor.std(x, axis=None, keepdims=False)

	



	Parameter:	x -  symbolic Tensor (or compatible)


	Parameter:	axis - axis or axes along which to compute the standard deviation


	Parameter:	keepdims - (boolean) If this is set to True, the axes which are reduced are
left in the result as dimensions with size one. With this option, the result
will broadcast correctly against the original tensor.


	Returns:	variance of x along axis






	axis can be:

	
	None - in which case the standard deviation is computed along all axes (like numpy)

	an int - computed along this axis

	a list of ints - computed along these axes












	
theano.tensor.all(x, axis=None, keepdims=False)

	



	Parameter:	x -  symbolic Tensor (or compatible)


	Parameter:	axis - axis or axes along which to apply ‘bitwise and’


	Parameter:	keepdims - (boolean) If this is set to True, the axes which are reduced are
left in the result as dimensions with size one. With this option, the result
will broadcast correctly against the original tensor.


	Returns:	bitwise and of x along axis






	axis can be:

	
	None - in which case the ‘bitwise and’ is computed along all axes (like numpy)

	an int - computed along this axis

	a list of ints - computed along these axes












	
theano.tensor.any(x, axis=None, keepdims=False)

	



	Parameter:	x -  symbolic Tensor (or compatible)


	Parameter:	axis - axis or axes along which to apply bitwise or


	Parameter:	keepdims - (boolean) If this is set to True, the axes which are reduced are
left in the result as dimensions with size one. With this option, the result
will broadcast correctly against the original tensor.


	Returns:	bitwise or of x along axis






	axis can be:

	
	None - in which case the ‘bitwise or’ is computed along all axes (like numpy)

	an int - computed along this axis

	a list of ints - computed along these axes












	
theano.tensor.ptp(x, axis = None)

	Range of values (maximum - minimum) along an axis.
The name of the function comes from the acronym for peak to peak.





	Parameter:	x Input tensor.


	Parameter:	axis Axis along which to find the peaks. By default,
flatten the array.


	Returns:	A new array holding the result.












Indexing

Like NumPy, Theano distinguishes between basic and advanced indexing.
Theano fully supports basic indexing
(see NumPy’s indexing [http://docs.scipy.org/doc/numpy/reference/arrays.indexing.html]).

Integer advanced indexing [http://docs.scipy.org/doc/numpy/reference/arrays.indexing.html#integer]
will be supported in 0.6rc4 (or the development version). We do not
support boolean masks, as Theano does not have a boolean type (we use
int8 for the output of logic operators).

NumPy with a mask:

>>> n = np.arange(9).reshape(3,3)
>>> n[n > 4]
array([5, 6, 7, 8])





Theano indexing with a “mask” (incorrect approach):

>>> t = theano.tensor.arange(9).reshape((3,3))
>>> t[t > 4].eval()  # an array with shape (3, 3, 3)
array([[[0, 1, 2],
        [0, 1, 2],
        [0, 1, 2]],

       [[0, 1, 2],
        [0, 1, 2],
        [3, 4, 5]],

       [[3, 4, 5],
        [3, 4, 5],
        [3, 4, 5]]], dtype=int8)





Getting a Theano result like NumPy:

>>> t[(t > 4).nonzero()].eval()
array([5, 6, 7, 8], dtype=int8)





The gradient of Advanced indexing needs in many cases NumPy
1.8. It is not released yet as of April 30th, 2013. You can use NumPy
development version to have this feature now.

Index-assignment is not supported.  If you want to do something like a[5]
= b or a[5]+=b, see theano.tensor.set_subtensor() and theano.tensor.inc_subtensor() below.


	
theano.tensor.set_subtensor(x, y, inplace=False, tolerate_inplace_aliasing=False)

	Return x with the given subtensor overwritten by y.

Example: To replicate the numpy expression “r[10:] = 5”, type

>>> r = ivector()
>>> new_r = set_subtensor(r[10:], 5)









	Parameters:	
	x – symbolic variable for the lvalue of = operation

	y – symbolic variable for the rvalue of = operation

	tolerate_inplace_aliasing – see inc_subtensor for documentation.














	
theano.tensor.inc_subtensor(x, y, inplace=False, set_instead_of_inc=False, tolerate_inplace_aliasing=False)

	Return x with the given subtensor incremented by y.





	Parameters:	
	x – the symbolic result of a Subtensor operation.

	y – the amount by which to increment ths subtensor in question

	tolerate_inplace_aliasing – allow x and y to be views of a single
underlying array even while working inplace.  For correct results,
x and y must not be overlapping views; if they overlap, the result
of this Op will generally be incorrect. This value has no effect if
inplace=False.









Example: To replicate the numpy expression “r[10:] += 5”, type

>>> r = ivector()
>>> new_r = inc_subtensor(r[10:], 5)












Operator Support

Many Python operators are supported.

>>> a, b = T.itensor3(), T.itensor3() # example inputs






Arithmetic

>>> a + 3      # T.add(a, 3) -> itensor3
>>> 3 - a      # T.sub(3, a)
>>> a * 3.5    # T.mul(a, 3.5) -> ftensor3 or dtensor3 (depending on casting)
>>> 2.2 / a    # T.truediv(2.2, a)
>>> 2.2 // a   # T.intdiv(2.2, a)
>>> 2.2**a     # T.pow(2.2, a)
>>> b % a      # T.mod(b, a)








Bitwise

>>> a & b      # T.and_(a,b)    bitwise and (alias T.bitwise_and)
>>> a ^ 1      # T.xor(a,1)     bitwise xor (alias T.bitwise_xor)
>>> a | b      # T.or_(a,b)     bitwise or (alias T.bitwise_or)
>>> ~a         # T.invert(a)    bitwise invert (alias T.bitwise_not)








Inplace

In-place operators are not supported.  Theano’s graph-optimizations
will determine which intermediate values to use for in-place
computations.  If you would like to update the value of a
shared variable, consider using the updates argument to
theano.function().






Elementwise


Casting


	
theano.tensor.cast(x, dtype)

	Cast any tensor x to a Tensor of the same shape, but with a different
numerical type dtype.

This is not a reinterpret cast, but a coersion cast, similar to
numpy.asarray(x, dtype=dtype).

import theano.tensor as T
x = T.matrix()
x_as_int = T.cast(x, 'int32')





Attempting to casting a complex value to a real value is ambiguous and
will raise an exception.  Use real(), imag(), abs(), or angle().






	
theano.tensor.real(x)

	Return the real (not imaginary) components of Tensor x.
For non-complex x this function returns x.






	
theano.tensor.imag(x)

	Return the imaginary components of Tensor x.
For non-complex x this function returns zeros_like(x).








Comparisons


	The six usual equality and inequality operators share the same interface.

	



	Parameter:	a - symbolic Tensor (or compatible)


	Parameter:	b - symbolic Tensor (or compatible)


	Return type:	symbolic Tensor


	Returns:	a symbolic tensor representing the application of the logical elementwise operator.






Note

Theano has no boolean dtype.  Instead, all boolean tensors are represented
in 'int8'.



Here is an example with the less-than operator.

import theano.tensor as T
x,y = T.dmatrices('x','y')
z = T.le(x,y)










	
theano.tensor.lt(a, b)

	Returns a symbolic 'int8' tensor representing the result of logical less-than (a<b).

Also available using syntax a < b






	
theano.tensor.gt(a, b)

	Returns a symbolic 'int8' tensor representing the result of logical greater-than (a>b).

Also available using syntax a > b






	
theano.tensor.le(a, b)

	Returns a variable representing the result of logical less than or equal (a<=b).

Also available using syntax a <= b






	
theano.tensor.ge(a, b)

	Returns a variable representing the result of logical greater or equal than (a>=b).

Also available using syntax a >= b






	
theano.tensor.eq(a, b)

	Returns a variable representing the result of logical equality (a==b).






	
theano.tensor.neq(a, b)

	Returns a variable representing the result of logical inequality (a!=b).






	
theano.tensor.isnan(a)

	Returns a variable representing the comparison of a elements with nan.

This is equivalent to numpy.isnan.






	
theano.tensor.isinf(a)

	Returns a variable representing the comparison of a elements
with inf or -inf.

This is equivalent to numpy.isinf.








Condition


	
theano.tensor.switch(cond, ift, iff)

	
	Returns a variable representing a switch between ift (iftrue) and iff (iffalse)

	based on the condition cond. This is the theano equivalent of numpy.where.






	Parameter:	cond - symbolic Tensor (or compatible)


	Parameter:	ift - symbolic Tensor (or compatible)


	Parameter:	iff - symbolic Tensor (or compatible)


	Return type:	symbolic Tensor












import theano.tensor as T
a,b = T.dmatrices('a','b')
x,y = T.dmatrices('x','y')
z = T.switch(T.lt(a,b), x, y)










	
theano.tensor.where(cond, ift, iff)

	Alias for switch. where is the numpy name.






	
theano.tensor.clip(x, min, max)

	Return a variable representing x, but with all elements greater than
max clipped to max and all elements less than min clipped to min.

Normal broadcasting rules apply to each of x, min, and max.








Bit-wise


	The bitwise operators possess this interface:

	



	Parameter:	a - symbolic Tensor of integer type.


	Parameter:	b - symbolic Tensor of integer type.






Note

The bitwise operators must have an integer type as input.

The bit-wise not (invert) takes only one parameter.







	Return type:	symbolic Tensor with corresponding dtype.










	
theano.tensor.and_(a, b)

	Returns a variable representing the result of the bitwise and.






	
theano.tensor.or_(a, b)

	Returns a variable representing the result of the bitwise or.






	
theano.tensor.xor(a, b)

	Returns a variable representing the result of the bitwise xor.






	
theano.tensor.invert(a)

	Returns a variable representing the result of the bitwise not.






	
theano.tensor.bitwise_and(a, b)

	Alias for and_. bitwise_and is the numpy name.






	
theano.tensor.bitwise_or(a, b)

	Alias for or_. bitwise_or is the numpy name.






	
theano.tensor.bitwise_xor(a, b)

	Alias for xor_. bitwise_xor is the numpy name.






	
theano.tensor.bitwise_not(a, b)

	Alias for invert. invert is the numpy name.





Here is an example using the bit-wise and_ via the & operator:

import theano.tensor as T
x,y = T.imatrices('x','y')
z = x & y








Mathematical


	
theano.tensor.abs_(a)

	Returns a variable representingthe absolute of a, ie |a|.


Note

Can also be accessed with abs(a).








	
theano.tensor.angle(a)

	Returns a variable representing angular component of complex-valued Tensor a.






	
theano.tensor.exp(a)

	Returns a variable representing the exponential of a, ie e^a.






	
theano.tensor.maximum(a, b)

	Returns a variable representing the maximum element by element of a and b






	
theano.tensor.minimum(a, b)

	Returns a variable representing the minimum element by element of a and b






	
theano.tensor.neg(a)

	Returns a variable representing the negation of a (also -a).






	
theano.tensor.inv(a)

	Returns a variable representing the inverse of a, ie 1.0/a. Also called reciprocal.






	
theano.tensor.log(a), log2(a), log10(a)

	Returns a variable representing the base e, 2 or 10 logarithm of a.






	
theano.tensor.sgn(a)

	Returns a variable representing the sign of a.






	
theano.tensor.ceil(a)

	Returns a variable representing the ceiling of a (for example ceil(2.1) is 3).






	
theano.tensor.floor(a)

	Returns a variable representing the floor of a (for example floor(2.9) is 2).






	
theano.tensor.round(a, mode="half_away_from_zero")

	Returns a variable representing the rounding of a in the same dtype as a. Implemented rounding mode are half_away_from_zero and half_to_even.






	
theano.tensor.iround(a, mode="half_away_from_zero")

	Short hand for cast(round(a, mode),’int64’).






	
theano.tensor.sqr(a)

	Returns a variable representing the square of a, ie a^2.






	
theano.tensor.sqrt(a)

	Returns a variable representing the of a, ie a^0.5.






	
theano.tensor.cos(a), sin(a), tan(a)

	Returns a variable representing the trigonometric functions of a (cosine, sine and tangent).






	
theano.tensor.cosh(a), sinh(a), tanh(a)

	Returns a variable representing the hyperbolic trigonometric functions of a (hyperbolic cosine, sine and tangent).






	
theano.tensor.erf(a), erfc(a)

	Returns a variable representing the error function or the complementary error function. wikipedia [http://en.wikipedia.org/wiki/Error_function]






	
theano.tensor.erfinv(a), erfcinv(a)

	Returns a variable representing the inverse error function or the inverse complementary error function. wikipedia [http://en.wikipedia.org/wiki/Error_function#Inverse_functions]






	
theano.tensor.gamma(a)

	Returns a variable representing the gamma function.






	
theano.tensor.gammaln(a)

	Returns a variable representing the logarithm of the gamma function.






	
theano.tensor.psi(a)

	Returns a variable representing the derivative of the logarithm of
the gamma function (also called the digamma function).






	
theano.tensor.chi2sf(a, df)

	Returns a variable representing the survival function (1-cdf —
sometimes more accurate).

C code is provided in the Theano_lgpl repository.
This makes it faster.

https://github.com/Theano/Theano_lgpl.git








Broadcasting in Theano vs. Numpy

Broadcasting is a mechanism which allows tensors with
different numbers of dimensions to be added or multiplied
together by (virtually) replicating the smaller tensor along
the dimensions that it is lacking.

Broadcasting is the mechanism by which a scalar
may be added to a matrix, a vector to a matrix or a scalar to
a vector.


[image: ../../_images/bcast.png]


Broadcasting a row matrix. T and F respectively stand for
True and False and indicate along which dimensions we allow
broadcasting.

If the second argument were a vector, its shape would be
(2,) and its broadcastable pattern (F,). They would
be automatically expanded to the left to match the
dimensions of the matrix (adding 1 to the shape and T
to the pattern), resulting in (1, 2) and (T, F).
It would then behave just like the example above.

Unlike numpy which does broadcasting dynamically, Theano needs
to know, for any operation which supports broadcasting, which
dimensions will need to be broadcasted. When applicable, this
information is given in the Type of a Variable.

See also:


	SciPy documentation about numpy’s broadcasting [http://www.scipy.org/EricsBroadcastingDoc]

	OnLamp article about numpy’s broadcasting [http://www.onlamp.com/pub/a/python/2000/09/27/numerically.html]








Linear Algebra


	
theano.tensor.dot(X, Y)

	



	Parameters:	
	X (symbolic matrix or vector) – left term

	Y (symbolic matrix or vector) – right term






	Return type:	symbolic matrix or vector




	Returns:	the inner product of X and Y.












	
theano.tensor.outer(X, Y)

	



	Parameters:	
	X (symbolic vector) – left term

	Y (symbolic vector) – right term






	Return type:	symbolic matrix




	Returns:	vector-vector outer product












	
theano.tensor.tensordot(a, b, axes=2)

	Given two tensors a and b,tensordot computes a generalized dot product over
the provided axes. Theano’s implementation reduces all expressions to
matrix or vector dot products and is based on code from Tijmen Tieleman’s
gnumpy (http://www.cs.toronto.edu/~tijmen/gnumpy.html).





	Parameters:	
	a (symbolic tensor) – the first tensor variable

	b (symbolic tensor) – the second tensor variable

	axes (int or array-like of length 2) – an integer or array. If an integer, the number of axes
to sum over. If an array, it must have two array
elements containing the axes to sum over in each tensor.

Note that the default value of 2 is not guaranteed to work
for all values of a and b, and an error will be raised if
that is the case. The reason for keeping the default is to
maintain the same signature as numpy’s tensordot function
(and np.tensordot raises analogous errors for non-compatible
inputs).

If an integer i, it is converted to an array containing
the last i dimensions of the first tensor and the first
i dimensions of the second tensor:


axes = [range(a.ndim - i, b.ndim), range(i)]


If an array, its two elements must contain compatible axes
of the two tensors. For example, [[1, 2], [2, 0]] means sum
over the 2nd and 3rd axes of a and the 3rd and 1st axes of b.
(Remember axes are zero-indexed!) The 2nd axis of a and the
3rd axis of b must have the same shape; the same is true for
the 3rd axis of a and the 1st axis of b.








	Returns:	a tensor with shape equal to the concatenation of a’s shape
(less any dimensions that were summed over) and b’s shape
(less any dimensions that were summed over).




	Return type:	symbolic tensor







It may be helpful to consider an example to see what tensordot does.
Theano’s implementation is identical to NumPy’s. Here a has shape (2, 3, 4)
and b has shape (5, 6, 4, 3). The axes to sum over are [[1, 2], [3, 2]] –
note that a.shape[1] == b.shape[3] and a.shape[2] == b.shape[2]; these axes
are compatible. The resulting tensor will have shape (2, 5, 6) – the
dimensions that are not being summed:

import numpy as np

a = np.random.random((2,3,4))
b = np.random.random((5,6,4,3))

#tensordot
c = np.tensordot(a, b, [[1,2],[3,2]])

#loop replicating tensordot
a0, a1, a2 = a.shape
b0, b1, _, _ = b.shape
cloop = np.zeros((a0,b0,b1))

#loop over non-summed indices -- these exist
#in the tensor product.
for i in range(a0):
    for j in range(b0):
        for k in range(b1):
            #loop over summed indices -- these don't exist
            #in the tensor product.
            for l in range(a1):
                for m in range(a2):
                    cloop[i,j,k] += a[i,l,m] * b[j,k,m,l]

assert np.allclose(c, cloop)





This specific implementation avoids a loop by transposing a and b such that
the summed axes of a are last and the summed axes of b are first. The
resulting arrays are reshaped to 2 dimensions (or left as vectors, if
appropriate) and a matrix or vector dot product is taken. The result is
reshaped back to the required output dimensions.

In an extreme case, no axes may be specified. The resulting tensor
will have shape equal to the concatenation of the shapes of a and b:

>>> c = np.tensordot(a, b, 0)
>>> a.shape
(2, 3, 4)
>>> b.shape
(5, 6, 4, 3)
>>> print(c.shape)
(2, 3, 4, 5, 6, 4, 3)









	Note:	See the documentation of numpy.tensordot [http://docs.scipy.org/doc/numpy/reference/generated/numpy.tensordot.html] for more examples.










	
theano.tensor.batched_dot(X, Y)

	



	Parameters:	
	x – A Tensor with sizes e.g.: for  3D (dim1, dim3, dim2)

	y – A Tensor with sizes e.g.: for 3D (dim1, dim2, dim4)









This function computes the dot product between the two tensors, by iterating
over the first dimension using scan.
Returns a tensor of size e.g. if it is 3D: (dim1, dim3, dim4)
Example:

>>> first = T.tensor3('first')
>>> second = T.tensor3('second')
>>> result = batched_dot(first, second)









	Note:	This is a subset of numpy.einsum, but we do not provide it for now.
But numpy einsum is slower than dot or tensordot:
http://mail.scipy.org/pipermail/numpy-discussion/2012-October/064259.html




	Parameters:	
	X (symbolic tensor) – left term

	Y (symbolic tensor) – right term






	Returns:	tensor of products












	
theano.tensor.batched_tensordot(X, Y, axes=2)

	



	Parameters:	
	x – A Tensor with sizes e.g.: for 3D (dim1, dim3, dim2)

	y – A Tensor with sizes e.g.: for 3D (dim1, dim2, dim4)

	axes (int or array-like of length 2) – an integer or array. If an integer, the number of axes
to sum over. If an array, it must have two array
elements containing the axes to sum over in each tensor.

If an integer i, it is converted to an array containing
the last i dimensions of the first tensor and the first
i dimensions of the second tensor (excluding the first
(batch) dimension):

axes = [range(a.ndim - i, b.ndim), range(1,i+1)]





If an array, its two elements must contain compatible axes
of the two tensors. For example, [[1, 2], [2, 4]] means sum
over the 2nd and 3rd axes of a and the 3rd and 5th axes of b.
(Remember axes are zero-indexed!) The 2nd axis of a and the
3rd axis of b must have the same shape; the same is true for
the 3rd axis of a and the 5th axis of b.








	Returns:	a tensor with shape equal to the concatenation of a’s shape
(less any dimensions that were summed over) and b’s shape
(less first dimension and any dimensions that were summed over).




	Return type:	tensor of tensordots







A hybrid of batch_dot and tensordot, this function computes the
tensordot product between the two tensors, by iterating over the
first dimension using scan to perform a sequence of tensordots.





	Note:	See tensordot() and batched_dot() for
supplementary documentation.












Gradient / Differentiation

Driver for gradient calculations.


	
theano.gradient.grad(cost, wrt, consider_constant=None, disconnected_inputs='raise', add_names=True, known_grads=None, return_disconnected='zero')

	Return symbolic gradients for one or more variables with respect to some
cost.

For more information about how automatic differentiation works in Theano,
see gradient. For information on how to implement the gradient of
a certain Op, see grad().





	Parameters:	
	cost (Scalar (0-dimensional) tensor variable.
May optionally be None if known_grads is provided.) – a scalar with respect to which we are differentiating

	wrt (Tensor variable or list of variables.) – term[s] for which we want gradients

	consider_constant (list of variables) – a list of expressions not to backpropagate
through

	disconnected_inputs (string) – Defines the behaviour if some of the variables
in wrt are not part of the computational graph computing cost
(or if all links are non-differentiable). The possible values are:
- ‘ignore’: considers that the gradient on these parameters is zero.
- ‘warn’: consider the gradient zero, and print a warning.
- ‘raise’: raise DisconnectedInputError.

	add_names (bool) – If True, variables generated by grad will be named
(d<cost.name>/d<wrt.name>) provided that both cost and wrt have
names

	known_grads (dict) – If not None, a dictionary mapping variables to their
gradients. This is useful in the case where you know the
gradient on some variables but do not know the original
cost.

	return_disconnected (string) – 
	
	‘zero’ : If wrt[i] is disconnected, return value i will be

	wrt[i].zeros_like()





	
	‘None’ : If wrt[i] is disconnected, return value i will be

	None





	‘Disconnected’ : returns variables of type DisconnectedType










	Return type:	variable or list/tuple of Variables (matching wrt)




	Returns:	symbolic expression of gradient of cost with respect to each
of the wrt terms.
If an element of wrt is not differentiable with respect
to the output, then a zero variable is returned.
It returns an object of same type as wrt: a list/tuple
or Variable in all cases.











See the gradient page for complete documentation
of the gradient module.




List of Implemented R op

See the gradient tutorial for the R op documentation.


	list of ops that support R-op:

	
	
	with test [Most is tensor/tests/test_rop.py]

	
	SpecifyShape

	MaxAndArgmax

	Subtensor

	IncSubtensor set_subtensor too

	Alloc

	Dot

	Elemwise

	Sum

	Softmax

	Shape

	Join

	Rebroadcast

	Reshape

	Flatten

	DimShuffle

	Scan [In scan_module/tests/test_scan.test_rop]









	
	without test

	
	Split

	ARange

	ScalarFromTensor

	AdvancedSubtensor1

	AdvancedIncSubtensor1

	AdvancedIncSubtensor















Partial list of ops without support for R-op:



	All sparse ops

	All linear algebra ops.

	PermuteRowElements

	Tile

	AdvancedSubtensor

	TensorDot

	Outer

	Prod

	MulwithoutZeros

	ProdWithoutZeros

	CAReduce(for max,... done for MaxAndArgmax op)

	MaxAndArgmax(only for matrix on axis 0 or 1)
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nnet  – Ops related to neural networks

Theano was originally developped for machine learning applications, particularly
for the topic of deep learning. As such, our lab has developed many functions
and ops which are particular to neural networks and deep learning.



	conv – Ops for convolutional neural nets

	nnet – Ops for neural networks

	neighbours – Ops for working with images in convolutional nets









          

      

      

    


    
         Copyright 2008--2015, LISA lab.
      Last updated on Mar 27, 2015.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Theano 0.7 documentation 

          	Library Documentation 

          	tensor  – Types and Ops for Symbolic numpy 

          	nnet  – Ops related to neural networks 
 
      

    


    
      
          
            
  
conv – Ops for convolutional neural nets


Note

Two similar implementation exists for conv2d:


signal.conv2d and
nnet.conv2d.


The former implements a traditional
2D convolution, while the latter implements the convolutional layers
present in convolutional neural networks (where filters are 3D and pool
over several input channels).




Note

As of October 21st, 2014, the default GPU image convolution
changed: By default, if cuDNN
is available, we will use it, otherwise we will fall back to using the
gemm version (slower then cuDNN in most cases and uses more memory).

Both cuDNN and the gemm version can be disabled using the Theano flags
optimizer_excluding=conv_dnn and optimizer_excluding=conv_gemm,
respectively. In this case, we will fall back to using the legacy
convolution code, which is slower, but does not require extra memory.
To verify that cuDNN is used, you can supply the Theano flag
optimizer_including=cudnn. This will raise an error if cuDNN is
unavailable.

It is not advised to ever disable cuDNN, as this is usually the fastest
option. Disabling the gemm version is only useful if cuDNN is unavailable
and you run out of GPU memory.

There are two other implementations: An FFT-based convolution integrated
into Theano, and an implementation by Alex Krizhevsky available via
Pylearn2. See the documentation below on how to use them.

As of November 24th, 2014, you can also use a meta-optimizer to
automatically choose the fastest implementation for each specific
convolution in your graph. For each instance, it will compile and benchmark
each applicable implementation of the ones listed below and choose the
fastest one. As performance is dependent on input and filter shapes, this
only works for operations introduced via nnet.conv2d with fully specified
shape information.
Enable it via the Theano flag optimizer_including=conv_meta, and
optionally set it to verbose mode via the flag metaopt.verbose=1.



TODO: Give examples on how to use these things! They are pretty complicated.


	
	Implemented operators for neural network 2D / image convolution:

	
	nnet.conv2d.
This is the standard operator for convolutional neural networks working
with batches of multi-channel 2D images, available for CPU and GPU. It
computes a convolution, i.e., it flips the kernel.
Most of the more efficient GPU implementations listed below can be
inserted automatically as a replacement for nnet.conv2d via graph
optimizations. Some of these graph optimizations are enabled by default,
others can be enabled via Theano flags.



	conv2d_fft This
is a GPU-only version of nnet.conv2d that uses an FFT transform
to perform the work.  It flips the kernel just like conv2d.
conv2d_fft should not be used directly as
it does not provide a gradient. Instead, use nnet.conv2d and
allow Theano’s graph optimizer to replace it by the FFT version
by setting ‘THEANO_FLAGS=optimizer_including=conv_fft’
in your environment. If enabled, it will take precedence over cuDNN
and the gemm version.  It is not enabled by default because it
has some restrictions on input and uses a lot more memory.  Also
note that it requires CUDA >= 5.0, scikits.cuda >= 0.5.0 and
PyCUDA to run.  To deactivate the FFT optimization on a specific
nnet.conv2d while the optimization flag is active, you can set
its version parameter to 'no_fft'. To enable it for just
one Theano function:

mode = theano.compile.get_default_mode()
mode = mode.including('conv_fft')

f = theano.function(..., mode=mode)







	cuda-convnet wrapper for 2d correlation [http://deeplearning.net/software/pylearn2/library/alex.html]

Wrapper for an open-source GPU-only implementation of conv2d by Alex
Krizhevsky, very fast, but with several restrictions on input and kernel
shapes, and with a different memory layout for the input. It does not
flip the kernel.

This is in Pylearn2, where it is normally called from the linear transform [http://deeplearning.net/software/pylearn2/library/linear.html]
implementation, but it can also be used directly from within Theano [http://benanne.github.io/2014/04/03/faster-convolutions-in-theano.html]
as a manual replacement for nnet.conv2d.



	GpuCorrMM
This is a GPU-only 2d correlation implementation taken from
caffe [https://github.com/BVLC/caffe/blob/master/src/caffe/layers/conv_layer.cu]
and also used by Torch. It does not flip the kernel.

For each element in a batch, it first creates a
Toeplitz [http://en.wikipedia.org/wiki/Toeplitz_matrix] matrix in a CUDA kernel.
Then, it performs a gemm call to multiply this Toeplitz matrix and the filters
(hence the name: MM is for matrix multiplication).
It needs extra memory for the Toeplitz matrix, which is a 2D matrix of shape
(no of channels * filter width * filter height, output width * output height).

As it provides a gradient, you can use it as a replacement for nnet.conv2d.
But usually, you will just use nnet.conv2d and allow Theano’s graph
optimizer to automatically replace it by the GEMM version if cuDNN is not
available. To explicitly disable the graph optimizer, set
THEANO_FLAGS=optimizer_excluding=conv_gemm in your environment.
If using it, please see the warning about a bug in CUDA 5.0 to 6.0 below.



	dnn_conv GPU-only
convolution using NVIDIA’s cuDNN library. This requires that you have
cuDNN installed and available, which in turn requires CUDA 6.5 and a GPU
with compute capability 3.0 or more.

If cuDNN is available, by default, Theano will replace all nnet.conv2d
operations with dnn_conv. To explicitly disable it, set
THEANO_FLAGS=optimizer_excluding=conv_dnn in your environment.
As dnn_conv has a gradient defined, you can also use it manually.











	
	Implemented operators for neural network 3D / video convolution:

	
	conv3D
3D Convolution applying multi-channel 3D filters to batches of
multi-channel 3D images. It does not flip the kernel.



	conv3d_fft
GPU-only version of conv3D using FFT transform. conv3d_fft should
not be called directly as it does not provide a gradient.
Instead, use conv3D and allow Theano’s graph optimizer to replace it by
the FFT version by setting
THEANO_FLAGS=optimizer_including=conv3d_fft:convgrad3d_fft:convtransp3d_fft
in your environment. This is not enabled by default because it does not
support strides and uses more memory. Also note that it requires
CUDA >= 5.0, scikits.cuda >= 0.5.0 and PyCUDA to run.
To enable for just one Theano function:

mode = theano.compile.get_default_mode()
mode = mode.including('conv3d_fft', 'convgrad3d_fft', 'convtransp3d_fft')

f = theano.function(..., mode=mode)







	GpuCorr3dMM
This is a GPU-only 3d correlation relying on a Toeplitz matrix
and gemm implementation (see GpuCorrMM)
It needs extra memory for the Toeplitz matrix, which is a 2D matrix of shape
(no of channels * filter width * filter height * filter depth, output width * output height * output depth).
As it provides a gradient, you can use it as a replacement for nnet.conv3d.
Alternatively, you can use nnet.conv3d and allow Theano’s graph optimizer
to replace it by the GEMM version by setting
THEANO_FLAGS=optimizer_including=conv3d_gemm:convgrad3d_gemm:convtransp3d_gemm in your environment.
This is not enabled by default because it uses some extra memory, but the
overhead is small compared to conv3d_fft, there are no restrictions on
input or kernel shapes and strides are supported. If using it,
please see the warning about a bug in CUDA 5.0 to 6.0
in GpuCorrMM.



	conv3d2d
Another conv3d implementation that uses the conv2d with data reshaping.
It is faster in some cases than conv3d, and work on the GPU.
It flip the kernel.














	
theano.tensor.nnet.conv.conv2d(input, filters, image_shape=None, filter_shape=None, border_mode='valid', subsample=(1, 1), **kargs)

	This function will build the symbolic graph for convolving a stack of
input images with a set of filters. The implementation is modelled after
Convolutional Neural Networks (CNN). It is simply a wrapper to the ConvOp
but provides a much cleaner interface.





	Parameters:	
	input (symbolic 4D tensor) – mini-batch of feature map stacks, of shape
(batch size, stack size, nb row, nb col)
see the optional parameter image_shape

	filters (symbolic 4D tensor) – set of filters used in CNN layer of shape
(nb filters, stack size, nb row, nb col)
see the optional parameter filter_shape

	border_mode – 
	‘valid’– only apply filter to complete patches of the image. Generates

	output of shape: image_shape - filter_shape + 1

	‘full’ – zero-pads image to multiple of filter shape to generate output

	of shape: image_shape + filter_shape - 1





	subsample (tuple of len 2) – factor by which to subsample the output.
Also called strides elsewhere.

	image_shape (None, tuple/list of len 4 of int, None or
Constant variable) – The shape of the input parameter.
Optional, used for optimization like loop unrolling
You can put None for any element of the list
to tell that this element is not constant.

	filter_shape (None, tuple/list of len 4 of int, None or
Constant variable) – Optional, used for optimization like loop unrolling
You can put None for any element of the list
to tell that this element is not constant.

	kwargs – kwargs are passed onto ConvOp.
Can be used to set the following:
unroll_batch, unroll_kern, unroll_patch,
openmp (see ConvOp doc)


	openmp: By default have the same value as

	config.openmp. For small image, filter,
batch size, nkern and stack size, it can be
faster to disable manually openmp. A fast and
incomplete test show that with image size
6x6, filter size 4x4, batch size==1,
n kern==1 and stack size==1, it is faster
to disable it in valid mode. But if we
grow the batch size to 10, it is faster
with openmp on a core 2 duo.










	Return type:	symbolic 4D tensor




	Returns:	set of feature maps generated by convolutional layer. Tensor is
of shape (batch size, nb filters, output row, output col)












	
theano.sandbox.cuda.fftconv.conv2d_fft(input, filters, image_shape=None, filter_shape=None, border_mode='valid', pad_last_dim=False)

	Perform a convolution through fft.

Only support input which will be even on the last dimension
(width).  All other dimensions can be anything and the filters can
have an even or odd width.

If you must use input which has an odd width, you can either pad
it or use the pad_last_dim argument which will do it for you and
take care to strip the padding before returning.  Don’t use this
argument if you are not sure the input is odd since the padding is
unconditional and will make even input odd, thus leading to
problems.

On valid mode the filters must be smaller than the input.

input: (b, ic, i0, i1)
filters: (oc, ic, f0, f1)

border_mode: ‘valid’ of ‘full’


	pad_last_dim: Unconditionally pad the last dimension of the input

	to to turn it from odd to even.  Will strip the
padding before returning the result.








	
theano.tensor.nnet.Conv3D.conv3D(V, W, b, d)

	3D “convolution” of multiple filters on a minibatch
(does not flip the kernel, moves kernel with a user specified stride)





	Parameters:	
	V – Visible unit, input.
dimensions: (batch, row, column, time, in channel)

	W – Weights, filter.
dimensions: (out channel, row, column, time ,in channel)

	b – bias, shape == (W.shape[0],)

	d – strides when moving the filter over the input(dx, dy, dt)






	Note:	The order of dimensions does not correspond to the one in conv2d.
This is for optimization.




	Note:	The GPU implementation is very slow. You should use
conv3d2d or
conv3d_fft for a
GPU graph instead.




	See:	Someone made a script that shows how to swap the axes
between both 3d convolution implementations in Theano. See
the last attachment [https://groups.google.com/d/msg/theano-users/1S9_bZgHxVw/0cQR9a4riFUJ].












	
theano.sandbox.cuda.fftconv.conv3d_fft(input, filters, image_shape=None, filter_shape=None, border_mode='valid', pad_last_dim=False)

	Perform a convolution through fft.

Only supports input whose shape is even on the last dimension.
All other dimensions can be anything and the filters can
have an even or odd last dimension.

The semantics associated with the last three dimensions
are not important as long as they are in the same order between
the inputs and the filters. For example, when the convolution
is done on a sequence of images, they could be either
(duration, height, width) or (height, width, duration).

If you must use input which has an odd width, you can either pad
it or use the pad_last_dim argument which will do it for you and
take care to strip the padding before returning. pad_last_dim checks
that the last dimension is odd before the actual paddding

On valid mode the filters must be smaller than the input.

input: (b, ic, i0, i1, i2)
filters: (oc, ic, f0, f1, i2)

border_mode: ‘valid’ of ‘full’


	pad_last_dim: Unconditionally pad the last dimension of the input

	to to turn it from odd to even.  Will strip the
padding before returning the result.








	
theano.tensor.nnet.conv3d2d.conv3d(signals, filters, signals_shape=None, filters_shape=None, border_mode='valid')

	Convolve spatio-temporal filters with a movie.

It flips the filters.





	Parameters:	
	signals – timeseries of images whose pixels have color channels.
shape: [Ns, Ts, C, Hs, Ws]

	filters – spatio-temporal filters
shape: [Nf, Tf, C, Hf, Wf]

	signals_shape – None or a tuple/list with the shape of signals

	filters_shape – None or a tuple/list with the shape of filters

	border_mode – The only one tested is ‘valid’.






	Note:	Another way to define signals: (batch,  time, in channel, row, column)
Another way to define filters: (out channel,time,in channel, row, column)




	Note:	For the GPU, you can use this implementation or
conv3d_fft.




	See:	Someone made a script that shows how to swap the axes between
both 3d convolution implementations in Theano. See the last
attachment [https://groups.google.com/d/msg/theano-users/1S9_bZgHxVw/0cQR9a4riFUJ].
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nnet – Ops for neural networks


	
	Sigmoid

	
	sigmoid()

	ultra_fast_sigmoid()

	hard_sigmoid()









	
	Others

	
	softplus()

	softmax()

	binary_crossentropy()

	categorical_crossentropy()












	
tensor.nnet.sigmoid(x)

	
	Returns the standard sigmoid nonlinearity applied to x

	



	Parameters:	x - symbolic Tensor (or compatible)




	Return type:	same as x




	Returns:	element-wise sigmoid: [image: sigmoid(x) = \frac{1}{1 + \exp(-x)}].




	note:	see ultra_fast_sigmoid() or hard_sigmoid() for faster versions.
Speed comparison for 100M float64 elements on a Core2 Duo @ 3.16 GHz:



	hard_sigmoid: 1.0s

	ultra_fast_sigmoid: 1.3s

	sigmoid (with amdlibm): 2.3s

	sigmoid (without amdlibm): 3.7s






Precision: sigmoid(without or without amdlibm) > ultra_fast_sigmoid > hard_sigmoid.











[image: ../../../_images/sigmoid_prec.png]
Example:

x,y,b = T.dvectors('x','y','b')
W = T.dmatrix('W')
y = T.nnet.sigmoid(T.dot(W,x) + b)






Note

The underlying code will return an exact 0 or 1 if an
element of x is too small or too big.








	
tensor.nnet.ultra_fast_sigmoid(x)

	
	Returns the approximated standard sigmoid() nonlinearity applied to x.

	



	Parameters:	x - symbolic Tensor (or compatible)


	Return type:	same as x


	Returns:	approximated element-wise sigmoid: [image: sigmoid(x) = \frac{1}{1 + \exp(-x)}].


	note:	To automatically change all sigmoid() ops to this version, use
the Theano optimization local_ultra_fast_sigmoid. This can be done
with the Theano flag optimizer_including=local_ultra_fast_sigmoid.
This optimization is done late, so it should not affect
stabilization optimization.










Note

The underlying code will return 0.00247262315663 as the
minimum value and 0.997527376843 as the maximum value. So it
never returns 0 or 1.




Note

Using directly the ultra_fast_sigmoid in the graph will
disable stabilization optimization associated with it. But
using the optimization to insert them won’t disable the
stability optimization.








	
tensor.nnet.hard_sigmoid(x)

	
	Returns the approximated standard sigmoid() nonlinearity applied to x.

	



	Parameters:	x - symbolic Tensor (or compatible)


	Return type:	same as x


	Returns:	approximated element-wise sigmoid: [image: sigmoid(x) = \frac{1}{1 + \exp(-x)}].


	note:	To automatically change all sigmoid() ops to this version, use
the Theano optimization local_hard_sigmoid. This can be done
with the Theano flag optimizer_including=local_hard_sigmoid.
This optimization is done late, so it should not affect
stabilization optimization.










Note

The underlying code will return an exact 0 or 1 if an
element of x is too small or too big.




Note

Using directly the ultra_fast_sigmoid in the graph will
disable stabilization optimization associated with it. But
using the optimization to insert them won’t disable the
stability optimization.








	
tensor.nnet.softplus(x)

	
	Returns the softplus nonlinearity applied to x

	



	Parameter:	x - symbolic Tensor (or compatible)


	Return type:	same as x


	Returns:	elementwise softplus: [image: softplus(x) = \log_e{\left(1 + \exp(x)\right)}].










Note

The underlying code will return an exact 0 if an element of x is too small.



x,y,b = T.dvectors('x','y','b')
W = T.dmatrix('W')
y = T.nnet.softplus(T.dot(W,x) + b)










	
tensor.nnet.softmax(x)

	
	Returns the softmax function of x:

	



	Parameter:	x symbolic 2D Tensor (or compatible).


	Return type:	same as x


	Returns:	a symbolic 2D tensor whose ijth element is  [image: softmax_{ij}(x) = \frac{\exp{x_{ij}}}{\sum_k\exp(x_{ik})}].









The softmax function will, when applied to a matrix, compute the softmax values row-wise.






	note:	this insert a particular op. But this op don’t yet
implement the Rop for hessian free. If you want that, implement
this equivalent code that have the Rop implemented
exp(x)/exp(x).sum(1, keepdims=True). Theano should
optimize this by inserting the softmax op itself.  The code of
the softmax op is more numeriacaly stable by using this code:

e_x = exp(x - x.max(axis=1, keepdims=True))
out = e_x / e_x.sum(axis=1, keepdims=True)














Example of use:

x,y,b = T.dvectors('x','y','b')
W = T.dmatrix('W')
y = T.nnet.softmax(T.dot(W,x) + b)










	
tensor.nnet.binary_crossentropy(output, target)

	
	Computes the binary cross-entropy between a target and an output:

	



	Parameters:	
	target - symbolic Tensor (or compatible)

	output - symbolic Tensor (or compatible)






	Return type:	same as target




	Returns:	a symbolic tensor, where the following is applied elementwise [image: crossentropy(t,o) = -(t\cdot log(o) + (1 - t) \cdot log(1 - o))].











The following block implements a simple auto-associator with a
sigmoid nonlinearity and a reconstruction error which corresponds
to the binary cross-entropy (note that this assumes that x will
contain values between 0 and 1):

x, y, b = T.dvectors('x', 'y', 'b')
W = T.dmatrix('W')
h = T.nnet.sigmoid(T.dot(W, x) + b)
x_recons = T.nnet.sigmoid(T.dot(V, h) + c)
recon_cost = T.nnet.binary_crossentropy(x_recons, x).mean()










	
tensor.nnet.categorical_crossentropy(coding_dist, true_dist)

	
Return the cross-entropy between an approximating distribution and a true distribution.
The cross entropy between two probability distributions measures the average number of bits
needed to identify an event from a set of possibilities, if a coding scheme is used based
on a given probability distribution q, rather than the “true” distribution p. Mathematically, this
function computes [image: H(p,q) = - \sum_x p(x) \log(q(x))], where
p=true_dist and q=coding_dist.





	Parameters:	
	coding_dist - symbolic 2D Tensor (or compatible). Each row
represents a distribution.

	true_dist - symbolic 2D Tensor OR symbolic vector of ints.  In
the case of an integer vector argument, each element represents the
position of the ‘1’ in a 1-of-N encoding (aka “one-hot” encoding)






	Return type:	tensor of rank one-less-than coding_dist











Note

An application of the scenario where true_dist has a
1-of-N representation is in classification with softmax
outputs. If coding_dist is the output of the softmax and
true_dist is a vector of correct labels, then the function
will compute y_i = - \log(coding_dist[i, one_of_n[i]]),
which corresponds to computing the neg-log-probability of the
correct class (which is typically the training criterion in
classification settings).



y = T.nnet.softmax(T.dot(W, x) + b)
cost = T.nnet.categorical_crossentropy(y, o)
# o is either the above-mentioned 1-of-N vector or 2D tensor
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neighbours – Ops for working with images in convolutional nets


	Functions



	
theano.tensor.nnet.neighbours.images2neibs(ten4, neib_shape, neib_step=None, mode='valid')

	Function images2neibs
allows to apply a sliding window operation to a tensor containing 
images
or other two-dimensional objects. 
The sliding window operation loops 
over points in input data and stores a rectangular neighbourhood of 
each point.   
It is possible to assign a step of selecting patches (parameter 
neib_step).





	Parameters:	
	ten4 (A 4d tensor-like.) – A 4-dimensional tensor which represents 
a list of lists of images.a list of lists of images.
It should have shape (list 1 dim, list 2 dim,
row, col). The first two dimensions can be 
useful to store different channels and batches.

	neib_shape (A 1d tensor-like of 2 values.) – A tuple containing two
values: height and width of the neighbourhood.
It should have shape (r,c) where r is the height of the
neighborhood in rows and c is the width of the neighborhood
in columns

	neib_step (A 1d tensor-like of 2 values.) – (dr,dc) where dr is the number of rows to
skip between patch and dc is the number of
columns. The parameter should be a tuple of two elements: 
number 
of rows and number of columns to skip each iteration. 
Basically, when the step is 1, the neighbourhood of every
first element is taken and every possible rectangular 
subset is returned. By default it is equal to
neib_shape in other words, the
patches are disjoint. When the step is greater than 
neib_shape, some elements are omitted. When None, this
is the same as
neib_shape(patch are disjoint)
.. note:: Currently the step size should be chosen in the way that the


corresponding dimension [image: i] (width or height) is equal to 
[image: n * step\_size_i + neib\_shape_i] for some [image: n]




	mode (str) – Possible values:


	valid

	Requires an input that is a multiple of the
pooling factor (in each direction)

	ignore_borders

	Same as valid, but will ignore the borders
if the shape(s) of the input
is not a multiple of the pooling factor(s)

	wrap_centered

	?? TODO comment










	Returns:	Reshapes the input as a 2D tensor where each row is an
pooling example. Pseudo-code of the output:


idx = 0
for i in xrange(list 1 dim):
    for j in xrange(list 2 dim):
        for k in <image column coordinates>:
            for l in <image row coordinates>:
                output[idx,:]
                     = flattened version of ten4[i,j,l:l+r,k:k+c]
                idx += 1






Note

The operation isn’t necessarily implemented internally with 
these for loops, they’re just the easiest way to describe the 
output pattern.














Example:

# Defining variables
images = T.tensor4('images')
neibs = images2neibs(images, neib_shape=(5, 5))

# Constructing theano function 
window_function = theano.function([images], neibs)

# Input tensor (one image 10x10)
im_val = np.arange(100.).reshape((1, 1, 10, 10))

# Function application
neibs_val = window_function(im_val)






Note

The underlying code will construct a 2D tensor of disjoint 
patches 5x5. The output has shape 4x25.








	
theano.tensor.nnet.neighbours.neibs2images(neibs, neib_shape, original_shape, mode='valid')

	Function neibs2images
performs the inverse operation of
images2neibs. It inputs
the output of images2neibs
and reconstructs its input.





	Parameters:	
	neibs – matrix like the one obtained by 
images2neibs

	neib_shape – neib_shape that was used in 
images2neibs

	original_shape – original shape of the 4d tensor given to 
images2neibs






	Returns:	Reconstructs the input of 
images2neibs,
a 4d tensor of shape original_shape.








Note

Currently, the function doesn’t support tensors created with
neib_step different from default value. This means that it may be
impossible to compute the gradient of a variable gained by 
images2neibs w.r.t. 
its inputs in this case, because it uses 
images2neibs for 
gradient computation.



Example, which uses a tensor gained in example for
images2neibs:

im_new = neibs2images(neibs, (5, 5), im_val.shape)
# Theano function definition
inv_window = theano.function([neibs], im_new)
# Function application
im_new_val = inv_window(neibs_val)






Note

The code will output the initial image array.












	See also: Indexing, scan – Looping in Theano









          

      

      

    


    
         Copyright 2008--2015, LISA lab.
      Last updated on Mar 27, 2015.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Theano 0.7 documentation 

          	Library Documentation 

          	tensor  – Types and Ops for Symbolic numpy 
 
      

    


    
      
          
            
  
raw_random – Low-level random numbers

Raw random provides the random-number drawing functionality, that underlies
the friendlier RandomStreams interface.


Reference


	
class raw_random.RandomStreamsBase(object)

	This is the interface for the
theano.tensor.shared_randomstreams.RandomStreams subclass


	
binomial(self, size=(), n=1, p=0.5, ndim=None):

	Sample n times with probability of success p for each
trial and return the number of successes.

If size is ambiguous on the number of dimensions, ndim
may be a plain integer to supplement the missing information.

This wraps the numpy implementation, so it has the same
behavior.






	
uniform(self,  size=(), low=0.0, high=1.0, ndim=None):

	Sample a tensor of the given size whose elements come from a
uniform distribution between low and high.

If size is ambiguous on the number of dimensions, ndim
may be a plain integer to supplement the missing information.

This wraps the numpy implementation, so it has the same
bounds: [low, high[.






	
normal(self, size=(), avg=0.0, std=1.0, ndim=None):

	Sample from a normal distribution centered on avg with the
specified standard deviation (std)

If size is ambiguous on the number of dimensions, ndim
may be a plain integer to supplement the missing information.

This wrap numpy implementation, so it have the same behavior.






	
random_integers(self, size=(), low=0, high=1, ndim=None):

	Sample a random integer between low and high, both inclusive.

If size is ambiguous on the number of dimensions, ndim
may be a plain integer to supplement the missing information.

This is a generalization of numpy.random.random_integers()
to the case where low and high are tensors. Otherwise it
behaves the same.






	
choice(self, size=(), a=2, replace=True, p=None, ndim=None, dtype='int64'):

	Choose values from a with or without replacement. a
can be a 1-D array or a positive scalar. If a is a scalar,
the samples are drawn from the range [0, a[.

If size is ambiguous on the number of dimensions, ndim
may be a plain integer to supplement the missing information.

This wraps the numpy implementation so it has the same behavior.






	
poisson(self, size=(), lam=None, ndim=None, dtype='int64'):

	Draw samples from a Poisson distribution.

The Poisson distribution is the limit of the Binomial
distribution for large N.

If size is ambiguous on the number of dimensions, ndim
may be a plain integer to supplement the missing information.

This wraps the numpy implementation so it has the same behavior.






	
permutation(self, size=(), n=1, ndim=None):

	Returns permutations of the integers between 0 and n-1, as
many times as required by size. For instance, if
size=(p,q), p*q permutations will be generated, and
the output shape will be (p,q,n), because each permutation
is of size n.

Theano tries to infer the number of dimensions from the length
of size, but you may always specify it with ndim.


Note

The output will have ndim+1 dimensions.



This is a generalization of numpy.random.permutation() to
tensors. Otherwise it behaves the same.






	
multinomial(self, size=(), n=1, pvals=[0.5, 0.5], ndim=None):

	Sample n times from a multinomial distribution defined by
probabilities pvals, as many times as required by
size. For instance, if size=(p,q), p*q samples
will be drawn, and the output shape will be
(p,q,len(pvals)).

Theano tries to infer the number of dimensions from the length
of size, but you may always specify it with ndim.


Note

The output will have ndim+1 dimensions.



This is a generalization of numpy.random.multinomial()
to the case where n and pvals are tensors. Otherwise
it behaves the same.






	
shuffle_row_elements(self, input):

	Return a variable with every row (rightmost index) shuffled.

This uses a permutation random variable internally, available
via the .permutation attribute of the return value.










	
class raw_random.RandomStateType(gof.Type)

	A Type for variables that will take numpy.random.RandomState
values.






	
raw_random.random_state_type(name=None)

	Return a new Variable whose .type is random_state_type.






	
class raw_random.RandomFunction(gof.Op)

	Op that draws random numbers from a numpy.RandomState object.
This Op is parametrized to draw numbers from many possible
distributions.






	
raw_random.uniform(random_state, size=None, low=0.0, high=1.0, ndim=None, dtype=None)

	Sample from a uniform distribution between low and high.

If the size argument is ambiguous on the number of
dimensions, the first argument may be a plain integer
to supplement the missing information.





	Returns:	RandomVariable, NewRandomState










	
raw_random.binomial(random_state, size=None, n=1, p=0.5, ndim=None, dtype='int64')

	Sample n times with probability of success p for each
trial and return the number of successes.

If size is ambiguous on the number of dimensions, ndim may
be a plain integer to supplement the missing information.





	Returns:	RandomVariable, NewRandomState










	
raw_random.normal(random_state, size=None, avg=0.0, std=1.0, ndim=None, dtype=None)

	Sample from a normal distribution centered on avg with the
specified standard deviation (std).

If size is ambiguous on the number of dimensions, ndim may
be a plain integer to supplement the missing information.





	Returns:	RandomVariable, NewRandomState










	
raw_random.random_integers(random_state, size=None, low=0, high=1, ndim=None, dtype='int64')

	Sample random integers in [low, high] to fill up size.

If size is ambiguous on the number of dimensions, ndim may
be a plain integer to supplement the missing information.





	Returns:	RandomVariable, NewRandomState










	
raw_random.permutation(random_state, size=None, n=1, ndim=None, dtype='int64')

	Returns permutations of the integers in [0, n[, as many times
as required by size. For instance, if size=(p,q), p*q
permutations will be generated, and the output shape will be
(p,q,n), because each permutation is of size n.

If size is ambiguous on the number of dimensions, ndim
may be a plain integer, which should correspond to len(size).


Note

The output will have ndim+1 dimensions.







	Returns:	RandomVariable, NewRandomState










	
raw_random.multinomial(random_state, size=None, p_vals=[0.5, 0.5], ndim=None, dtype='int64')

	Sample from a multinomial distribution defined by probabilities
pvals, as many times as required by size. For instance, if
size=(p,q), p*q samples will be drawn, and the output
shape will be (p,q,len(pvals)).

If size is ambiguous on the number of dimensions, ndim
may be a plain integer, which should correspond to len(size).


Note

The output will have ndim+1 dimensions.







	Returns:	RandomVariable, NewRandomState
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shared_randomstreams – Friendly random numbers


Guide

Since Theano uses a functional design, producing pseudo-random numbers in a
graph is not quite as straightforward as it is in numpy.

The way to think about putting randomness into Theano’s computations is to
put random variables in your graph.  Theano will allocate a numpy RandomState
object for each such variable, and draw from it as necessary.  We will call this sort of sequence of
random numbers a random stream.

For an example of how to use random numbers, see
using_random_numbers.




Reference


	
class shared_randomstreams.RandomStreams(raw_random.RandomStreamsBase)

	This is a symbolic stand-in for numpy.random.RandomState.
Random variables of various distributions are instantiated by calls to
parent class raw_random.RandomStreamsBase.


	
updates()

	



	Returns:	a list of all the (state, new_state) update pairs for the
random variables created by this object





This can be a convenient shortcut to enumerating all the random
variables in a large graph in the update parameter of function.






	
seed(meta_seed)

	meta_seed will be used to seed a temporary random number generator,
that will in turn generate seeds for all random variables
created by this object (via gen).





	Returns:	None










	
gen(op, *args, **kwargs)

	Return the random variable from op(*args, **kwargs), but
also install special attributes (.rng and update, see
RandomVariable ) into it.

This function also adds the returned variable to an internal list so
that it can be seeded later by a call to seed.






	
uniform, normal, binomial, multinomial, random_integers, ...

	See raw_random.RandomStreamsBase.










	
class shared_randomstreams.RandomVariable(object)

	
	
rng

	The shared variable whose .value is the numpy RandomState
generator feeding this random variable.






	
update

	A pair
whose first element is a shared variable whose value is a numpy RandomState,
and whose second element is an [symbolic] expression for the next value of that
RandomState after drawing samples.
Including this pair in the``updates`` list to function will cause the
function to update the random number generator feeding this variable.
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signal – Signal Processing


Signal Processing

The signal subpackage contains ops which are useful for performing various
forms of signal processing.



	conv – Convolution

	downsample – Down-Sampling
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conv – Convolution


Note

Two similar implementation exists for conv2d:


signal.conv2d and
nnet.conv2d.


The former implements a traditional
2D convolution, while the latter implements the convolutional layers
present in convolutional neural networks (where filters are 3D and pool
over several input channels).




	
theano.tensor.signal.conv.conv2d(input, filters, image_shape=None, filter_shape=None, border_mode='valid', subsample=(1, 1), **kargs)

	signal.conv.conv2d performs a basic 2D convolution of the input with the
given filters. The input parameter can be a single 2D image or a 3D tensor,
containing a set of images. Similarly, filters can be a single 2D filter or
a 3D tensor, corresponding to a set of 2D filters.

Shape parameters are optional and will result in faster execution.





	Parameters:	
	input (dmatrix of dtensor3) – symbolic variable for images to be filtered

	filters (dmatrix of dtensor3) – symbolic variable containing filter values

	border_mode – ‘valid’ or ‘full’. see scipy.signal.convolve2d

	subsample – factor by which to subsample output

	image_shape (tuple of length 2 or 3) – ([number images,] image height, image width)

	filter_shape (tuple of length 2 or 3) – ([number filters,] filter height, filter width)

	kwargs – see theano.tensor.nnet.conv.conv2d






	Return type:	symbolic 2D,3D or 4D tensor




	Returns:	tensor of filtered images, with shape
([number images,] [number filters,] image height, image width)












	
conv.fft(*todo)

	[James has some code for this, but hasn’t gotten it into the source tree yet.]
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downsample – Down-Sampling


	
theano.tensor.signal.downsample.max_pool_2d(input, ds, ignore_border=False, st=None, padding=(0, 0))

	Takes as input a N-D tensor, where N >= 2. It downscales the input image by
the specified factor, by keeping only the maximum value of non-overlapping
patches of size (ds[0],ds[1])





	Parameters:	
	input (N-D theano tensor of input images.) – input images. Max pooling will be done over the 2 last
dimensions.

	ds (tuple of length 2) – factor by which to downscale (vertical ds, horizontal ds).
(2,2) will halve the image in each dimension.

	ignore_border (bool) – When True, (5,5) input with ds=(2,2)
will generate a (2,2) output. (3,3) otherwise.

	st (tuple of lenght 2) – stride size, which is the number of shifts
over rows/cols to get the the next pool region.
if st is None, it is considered equal to ds
(no overlap on pooling regions)

	padding (tuple of two ints) – (pad_h, pad_w), pad zeros to extend beyond four borders
of the images, pad_h is the size of the top and bottom margins,
and pad_w is the size of the left and right margins.














	
downsample.fft(*todo)

	[James has some code for this, but hasn’t gotten it into the source tree yet.]
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tensor.utils –  Tensor Utils


	
theano.tensor.utils.hash_from_dict(d)

	Work around the fact that dict are not hashable in python

This request that all object have a sorted order that depend only
on the value of the object. This is true for integer/float/string

We do not verify that the objects in the dict have this property.

Also, we transform values that are list into tuple as list are not
hashable.






	
theano.tensor.utils.hash_from_ndarray(data)

	Return a hash from an ndarray

It takes care of the data, shapes, strides and dtype.






	
theano.tensor.utils.shape_of_variables(fgraph, input_shapes)

	Compute the numeric shape of all intermediate variables given input shapes


	Inputs:

	fgraph - the theano.FunctionGraph in question
input_shapes - a dict mapping input to shape

	Outputs:

	shapes - a dict mapping variable to shape



WARNING : This modifies the fgraph. Not pure.

>>> import theano
>>> x = theano.tensor.matrix('x')
>>> y = x[512:]; y.name = 'y'
>>> fgraph = theano.FunctionGraph([x], [y], clone=False)
>>> shape_of_variables(fgraph, {x: (1024, 1024)})
{y: (512, 1024), x: (1024, 1024)}













          

      

      

    


    
         Copyright 2008--2015, LISA lab.
      Last updated on Mar 27, 2015.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Theano 0.7 documentation 

          	Library Documentation 

          	tensor  – Types and Ops for Symbolic numpy 
 
      

    


    
      
          
            
  
tensor.extra_ops –  Tensor Extra Ops


	
theano.tensor.extra_ops.bartlett(M)

	An instance of this class returns the Bartlett spectral window in the
time-domain. The Bartlett window is very similar to a triangular window,
except that the end points are at zero. It is often used in signal
processing for tapering a signal, without generating too much ripple in
the frequency domain.





	Parameters:	M – (integer scalar) Number of points in the output
window. If zero or less, an empty vector is returned.


	Returns:	(vector of doubles) The triangular window, with the
maximum value normalized to one (the value one appears only if
the number of samples is odd), with the first and last samples
equal to zero.






New in version 0.6.








	
theano.tensor.extra_ops.bincount(x, weights=None, minlength=None)

	Count number of occurrences of each value in array of non-negative ints.

The number of bins (of size 1) is one larger than the largest
value in x. If minlength is specified, there will be at least
this number of bins in the output array (though it will be longer
if necessary, depending on the contents of x). Each bin gives the
number of occurrences of its index value in x. If weights is
specified the input array is weighted by it, i.e. if a value n
is found at position i, out[n] += weight[i] instead of out[n] += 1.
Wraping of numpy.bincount





	Parameters:	
	x – 1 dimension, nonnegative ints

	weights – array of the same shape as x with corresponding weights.
Optional.

	minlength – A minimum number of bins for the output array.
Optional.










New in version 0.6.








	
theano.tensor.extra_ops.cumprod(x, axis=None)

	Return the cumulative product of the elements along a given axis.

Wraping of numpy.cumprod.





	Parameters:	
	x – Input tensor variable.

	axis – The axis along which the cumulative product is computed.
The default (None) is to compute the cumprod over the flattened array.










New in version 0.7.








	
theano.tensor.extra_ops.cumsum(x, axis=None)

	Return the cumulative sum of the elements along a given axis.

Wraping of numpy.cumsum.





	Parameters:	
	x – Input tensor variable.

	axis – The axis along which the cumulative sum is computed.
The default (None) is to compute the cumsum over the flattened array.










New in version 0.7.








	
theano.tensor.extra_ops.diff(x, n=1, axis=-1)

	Calculate the n-th order discrete difference along given axis.

The first order difference is given by out[i] = a[i + 1] - a[i]
along the given axis, higher order differences are calculated by
using diff recursively. Wraping of numpy.diff.





	Parameters:	
	x – Input tensor variable.

	n – The number of times values are differenced, default is 1.

	axis – The axis along which the difference is taken,
default is the last axis.










New in version 0.6.








	
theano.tensor.extra_ops.fill_diagonal(a, val)

	Returns a copy of an array with all
elements of the main diagonal set to a specified scalar value.





	Parameters:	
	a – Rectangular array of at least two dimensions.

	val – Scalar value to fill the diagonal whose type must be
compatible with that of array ‘a’ (i.e. ‘val’ cannot be viewed
as an upcast of ‘a’).






	Returns:	An array identical to ‘a’ except that its main diagonal
is filled with scalar ‘val’. (For an array ‘a’ with a.ndim >=
2, the main diagonal is the list of locations a[i, i, ..., i]
(i.e. with indices all identical).)







Support rectangular matrix and tensor with more than 2 dimensions
if the later have all dimensions are equals.


New in version 0.6.








	
theano.tensor.extra_ops.fill_diagonal_offset(a, val, offset)

	Returns a copy of an array with all
elements of the main diagonal set to a specified scalar value.






	param a:	Rectangular array of two dimensions.


	param val:	Scalar value to fill the diagonal whose type must be
compatible with that of array ‘a’ (i.e. ‘val’ cannot be viewed
as an upcast of ‘a’).


	param offset:	Scalar value Offset of the diagonal from the main
diagonal. Can be positive or negative integer.


	return:	An array identical to ‘a’ except that its offset diagonal
is filled with scalar ‘val’. The output is unwrapped.













	
theano.tensor.extra_ops.repeat(x, repeats, axis=None)

	Repeat elements of an array.

It returns an array which has the same shape as x, except
along the given axis. The axis is used to speficy along which
axis to repeat values. By default, use the flattened input
array, and return a flat output array.

The number of repetitions for each element is repeat.
repeats is broadcasted to fit the length of the given axis.





	Parameters:	
	x – Input data, tensor variable.

	repeats – int, scalar or tensor variable.

	axis – int, optional.






	See:	tensor.tile








New in version 0.6.








	
theano.tensor.extra_ops.squeeze(x)

	Remove broadcastable dimensions from
the shape of an array.

It returns the input array, but with the
broadcastable dimensions removed. This is
always x itself or a view into x.





	Parameters:	x – Input data, tensor variable.


	Returns:	x without its broadcastable dimensions.






New in version 0.6.








	
theano.tensor.extra_ops.to_one_hot(y, nb_class, dtype=None)

	Return a matrix where each row correspond to the one hot
encoding of each element in y.






	param y:	A vector of integer value between 0 and nb_class - 1.


	param nb_class:	The number of class in y.


	param dtype:	The dtype of the returned matrix. Default floatX.


	return:	A matrix of shape (y.shape[0], nb_class), where each
row i is the one hot encoding of the corresponding y[i]
value.
















          

      

      

    


    
         Copyright 2008--2015, LISA lab.
      Last updated on Mar 27, 2015.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Theano 0.7 documentation 

          	Library Documentation 

          	tensor  – Types and Ops for Symbolic numpy 
 
      

    


    
      
          
            
  
tensor.io –  Tensor IO Ops


File operation


	Load from disk with the function load and its associated op LoadFromDisk






MPI operation


	Non-blocking transfer: isend and irecv.

	Blocking transfer: send and recv






Details


	
class theano.tensor.io.LoadFromDisk(dtype, broadcastable, mmap_mode=None)

	An operation to load an array from disk


	See Also

	load



@note: Non-differentiable.






	
class theano.tensor.io.MPIRecv(source, tag, shape, dtype)

	An operation to asynchronously receive an array to a remote host using MPI


	See Also

	MPIRecv
MPIWait



@note: Non-differentiable.






	
class theano.tensor.io.MPIRecvWait(tag)

	An operation to wait on a previously received array using MPI


	See Also

	MPIRecv



@note: Non-differentiable.






	
class theano.tensor.io.MPISend(dest, tag)

	An operation to asynchronously Send an array to a remote host using MPI


	See Also

	MPIRecv
MPISendWait



@note: Non-differentiable.






	
class theano.tensor.io.MPISendWait(tag)

	An operation to wait on a previously sent array using MPI


	See Also:

	MPISend



@note: Non-differentiable.






	
theano.tensor.io.irecv(shape, dtype, source, tag)

	non-blocking receive






	
theano.tensor.io.isend(var, dest, tag)

	Non blocking send






	
theano.tensor.io.load(path, dtype, broadcastable, mmap_mode=None)

	Load an array from an .npy file.





	Parameters:	
	path – A Generic symbolic variable, that will contain a string

	dtype – The data type of the array to be read.

	broadcastable – The broadcastable pattern of the loaded array,
for instance, (False,) for a vector, (False, True) for a column,
(False, False) for a matrix.

	mmap_mode – How the file will be loaded. None means that the
data will be copied into an array in memory, ‘c’ means that the file
will be mapped into virtual memory, so only the parts that are
needed will be actually read from disk and put into memory.
Other modes supported by numpy.load (‘r’, ‘r+’, ‘w+’) cannot
be supported by Theano.









>>> from theano import *
>>> path = Variable(Generic())
>>> x = tensor.load(path, 'int64', (False,))
>>> y = x*2
>>> fn = function([path], y)
>>> fn("stored-array.npy")
array([0, 2, 4, 6, 8], dtype=int64)










	
theano.tensor.io.mpi_send_wait_key(a)

	Wait as long as possible on Waits, Start Send/Recvs early






	
theano.tensor.io.mpi_tag_key(a)

	Break MPI ties by using the variable tag - prefer lower tags first






	
theano.tensor.io.recv(shape, dtype, source, tag)

	blocking receive






	
theano.tensor.io.send(var, dest, tag)

	blocking send
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tensor.slinalg –  Linear Algebra Ops Using Scipy


Note

This module is not imported by default. You need to import it to use it.




API


	
class theano.tensor.slinalg.Cholesky(lower=True)

	Return a triangular matrix square root of positive semi-definite x

L = cholesky(X, lower=True) implies dot(L, L.T) == X






	
class theano.tensor.slinalg.CholeskyGrad(lower=True)

	
	
perform(node, inputs, outputs)

	Implements the “reverse-mode” gradient [1] for the
Cholesky factorization of a positive-definite matrix.




	[1]	S. P. Smith. “Differentiation of the Cholesky Algorithm”.
Journal of Computational and Graphical Statistics,
Vol. 4, No. 2 (Jun.,1995), pp. 134-147
http://www.jstor.org/stable/1390762













	
class theano.tensor.slinalg.Eigvalsh(lower=True)

	Generalized eigenvalues of a Hermetian positive definite eigensystem






	
class theano.tensor.slinalg.EigvalshGrad(lower=True)

	Gradient of generalized eigenvalues of a Hermetian positive definite
eigensystem






	
class theano.tensor.slinalg.Expm(use_c_code='/usr/bin/g++')

	Compute the matrix exponential of a square array






	
class theano.tensor.slinalg.ExpmGrad(use_c_code='/usr/bin/g++')

	Gradient of the matrix exponential of a square array.






	
class theano.tensor.slinalg.Solve(A_structure='general', lower=False, overwrite_A=False, overwrite_b=False)

	Solve a system of linear equations






	
theano.tensor.slinalg.kron(a, b)

	Kronecker product

Same as scipy.linalg.kron(a, b).





	Note:	numpy.kron(a, b) != scipy.linalg.kron(a, b)!
They don’t have the same shape and order when
a.ndim != b.ndim != 2.




	Parameters:	
	a – array_like

	b – array_like






	Returns:	array_like with a.ndim + b.ndim - 2 dimensions.
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tensor.nlinalg –  Linear Algebra Ops Using Numpy


Note

This module is not imported by default. You need to import it to use it.




API


	
class theano.tensor.nlinalg.AllocDiag(use_c_code='/usr/bin/g++')

	Allocates a square matrix with the given vector as its diagonal.






	
class theano.tensor.nlinalg.Det(use_c_code='/usr/bin/g++')

	Matrix determinant
Input should be a square matrix






	
class theano.tensor.nlinalg.Eig(use_c_code='/usr/bin/g++')

	Compute the eigenvalues and right eigenvectors of a square array.






	
class theano.tensor.nlinalg.Eigh(UPLO='L')

	Return the eigenvalues and eigenvectors of a Hermitian or symmetric matrix.


	
grad(inputs, g_outputs)

	The gradient function should return



[image: \sum_n\left(W_n\frac{\partial\,w_n}       {\partial a_{ij}} + \sum_k V_{nk}\frac{\partial\,v_{nk}}       {\partial a_{ij}}\right),]





where [[image: W], [image: V]] corresponds to g_outputs,
[image: a] to inputs, and  [image: (w, v)=\mbox{eig}(a)].

Analytic formulae for eigensystem gradients are well-known in
perturbation theory:



[image: \frac{\partial\,w_n} {\partial a_{ij}} = v_{in}\,v_{jn}]



[image: \frac{\partial\,v_{kn}}           {\partial a_{ij}} = \sum_{m\ne n}\frac{v_{km}v_{jn}}{w_n-w_m}]














	
class theano.tensor.nlinalg.EighGrad(UPLO='L')

	Gradient of an eigensystem of a Hermitian matrix.


	
perform(node, inputs, outputs)

	Implements the “reverse-mode” gradient for the eigensystem of
a square matrix.










	
class theano.tensor.nlinalg.ExtractDiag(view=False)

	Return the diagonal of a matrix.





	Note:	work on the GPU.






	
perform(node, ins, outs)

	For some reason numpy.diag(x) is really slow, so we
implemented our own.










	
class theano.tensor.nlinalg.MatrixInverse

	Computes the inverse of a matrix [image: A].

Given a square matrix [image: A], matrix_inverse returns a square
matrix [image: A_{inv}] such that the dot product [image: A \cdot A_{inv}]
and [image: A_{inv} \cdot A] equals the identity matrix [image: I].





	Note:	When possible, the call to this op will be optimized to the call
of solve.






	
R_op(inputs, eval_points)

	The gradient function should return



[image: \frac{\partial X^{-1}}{\partial X}V,]





where [image: V] corresponds to g_outputs and [image: X] to
inputs.  Using the matrix cookbook [http://www2.imm.dtu.dk/pubdb/views/publication_details.php?id=3274],
once can deduce that the relation corresponds to



[image: X^{-1} \cdot V \cdot X^{-1}.]










	
grad(inputs, g_outputs)

	The gradient function should return



[image: V\frac{\partial X^{-1}}{\partial X},]





where [image: V] corresponds to g_outputs and [image: X] to
inputs. Using the matrix cookbook [http://www2.imm.dtu.dk/pubdb/views/publication_details.php?id=3274],
once can deduce that the relation corresponds to



[image: (X^{-1} \cdot V^{T} \cdot X^{-1})^T.]














	
class theano.tensor.nlinalg.MatrixPinv

	Computes the pseudo-inverse of a matrix [image: A].

The pseudo-inverse of a matrix A, denoted [image: A^+], is
defined as: “the matrix that ‘solves’ [the least-squares problem]
[image: Ax = b],” i.e., if [image: \bar{x}] is said solution, then
[image: A^+] is that matrix such that [image: \bar{x} = A^+b].

Note that [image: Ax=AA^+b], so [image: AA^+] is close to the identity matrix.
This method is not faster then matrix_inverse. Its strength comes from
that it works for non-square matrices.
If you have a square matrix though, matrix_inverse can be both more
exact and faster to compute. Also this op does not get optimized into a
solve op.






	
class theano.tensor.nlinalg.QRFull(mode)

	Full QR Decomposition.
Computes the QR decomposition of a matrix.
Factor the matrix a as qr, where q is orthonormal
and r is upper-triangular.






	
class theano.tensor.nlinalg.QRIncomplete(mode)

	Incomplete QR Decomposition.
Computes the QR decomposition of a matrix.
Factor the matrix a as qr and return a single matrix.






	
theano.tensor.nlinalg.diag(x)

	Numpy-compatibility method
If x is a matrix, return its diagonal.
If x is a vector return a matrix with it as its diagonal.


	This method does not support the k argument that numpy supports.








	
theano.tensor.nlinalg.matrix_dot(*args)

	Shorthand for product between several dots

Given [image: N] matrices [image: A_0, A_1, .., A_N], matrix_dot will
generate the matrix product between all in the given order, namely
[image: A_0 \cdot A_1 \cdot A_2 \cdot .. \cdot A_N].






	
theano.tensor.nlinalg.qr(a, mode='full')

	Computes the QR decomposition of a matrix.
Factor the matrix a as qr, where q
is orthonormal and r is upper-triangular.





	Parameters:	
	a (array_like, shape (M, N)) – Matrix to be factored.

	mode (one of ‘reduced’, ‘complete’, ‘r’, ‘raw’, ‘full’ and
‘economic’, optional) – If K = min(M, N), then


	‘reduced’

	returns q, r with dimensions (M, K), (K, N)

	‘complete’

	returns q, r with dimensions (M, M), (M, N)

	‘r’

	returns r only with dimensions (K, N)

	‘raw’

	returns h, tau with dimensions (N, M), (K,)

	‘full’

	alias of ‘reduced’, deprecated (default)

	‘economic’

	returns h from ‘raw’, deprecated.



The options ‘reduced’, ‘complete’, and ‘raw’ are new in numpy
1.8, see the notes for more information. The default is
‘reduced’ and to maintain backward compatibility with earlier
versions of numpy both it and the old default ‘full’ can be
omitted. Note that array h returned in ‘raw’ mode is
transposed for calling Fortran. The ‘economic’ mode is
deprecated. The modes ‘full’ and ‘economic’ may be passed
using only the first letter for backwards compatibility, but
all others must be spelled out.

Default mode is ‘full’ which is also default for numpy 1.6.1.





	note:	Default mode was left to full as full and reduced are
both doing the same thing in the new numpy version but only
full works on the old previous numpy version.












	Rtype q:	matrix of float or complex, optional




	Return q:	A matrix with orthonormal columns. When mode = ‘complete’ the
result is an orthogonal/unitary matrix depending on whether or
not a is real/complex. The determinant may be either +/- 1 in
that case.




	Rtype r:	matrix of float or complex, optional




	Return r:	The upper-triangular matrix.












	
theano.tensor.nlinalg.svd(a, full_matrices=1, compute_uv=1)

	This function performs the SVD on CPU.





	Parameters:	
	full_matrices (bool, optional) – If True (default), u and v have the shapes (M, M) and (N, N),
respectively.
Otherwise, the shapes are (M, K) and (K, N), respectively,
where K = min(M, N).

	compute_uv (bool, optional) – Whether or not to compute u and v in addition to s.
True by default.






	Returns:	U, V and D matrices.












	
theano.tensor.nlinalg.trace(X)

	Returns the sum of diagonal elements of matrix X.





	Note:	work on GPU since 0.6rc4.
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gradient – Symbolic Differentiation

Symbolic gradient is usually computed from gradient.grad(), which offers a
more convenient syntax for the common case of wanting the gradient in some
expressions with respect to a scalar cost.  The grad_sources_inputs()
function does the underlying work, and is more flexible, but is also more
awkward to use when gradient.grad() can do the job.

Driver for gradient calculations.


	
exception theano.gradient.DisconnectedInputError

	Raised when grad is asked to compute the gradient
with respect to a disconnected input and
disconnected_inputs=’raise’.






	
class theano.gradient.DisconnectedType

	A type indicating that a variable is a result
of taking the gradient of c with respect to x
when c is not a function of x.
A symbolic placeholder for 0, but to convey
the extra information that this gradient is 0
because it is disconnected.






	
exception theano.gradient.GradientError(arg, err_pos, abs_err, rel_err, abs_tol, rel_tol)

	This error is raised when a gradient is calculated, but incorrect.






	
theano.gradient.Lop(f, wrt, eval_points, consider_constant=None, disconnected_inputs='raise')

	Computes the L operation on f wrt to wrt evaluated at points given
in eval_points. Mathematically this stands for the jacobian of f wrt
to wrt left muliplied by the eval points.





	Return type:	Variable or list/tuple of Variables depending on type of f


	Returns:	symbolic expression such that
L_op[i] = sum_i ( d f[i] / d wrt[j]) eval_point[i]
where the indices in that expression are magic multidimensional
indices that specify both the position within a list and all
coordinates of the tensor element in the last
If f is a list/tuple, then return a list/tuple with the results.










	
exception theano.gradient.NullTypeGradError

	Raised when grad encounters a NullType.






	
theano.gradient.Rop(f, wrt, eval_points)

	Computes the R operation on f wrt to wrt evaluated at points given
in eval_points. Mathematically this stands for the jacobian of f wrt
to wrt right muliplied by the eval points.





	Return type:	Variable or list/tuple of Variables depending on type of f


	Returns:	symbolic expression such that
R_op[i] = sum_j ( d f[i] / d wrt[j]) eval_point[j]
where the indices in that expression are magic multidimensional
indices that specify both the position within a list and all
coordinates of the tensor element in the last.
If wrt is a list/tuple, then return a list/tuple with the results.










	
theano.gradient.consider_constant(x)

	DEPRECATED: use zero_grad() or disconnected_grad() instead.

Consider an expression constant when computing gradients.

The expression itself is unaffected, but when its gradient is
computed, or the gradient of another expression that this
expression is a subexpression of, it will not be backpropagated
through. In other words, the gradient of the expression is
truncated to 0.





	Parameters:	x – A Theano expression whose gradient should be truncated.


	Returns:	The expression is returned unmodified, but its gradient
is now truncated to 0.






New in version 0.7.








	
theano.gradient.disconnected_grad(x)

	Consider an expression constant when computing gradients,
while effectively not backpropagating through it.

The expression itself is unaffected, but when its gradient is
computed, or the gradient of another expression that this
expression is a subexpression of, it will not be backpropagated
through. This is effectively equivalent to truncating the gradient
expression to 0, but is executed faster than zero_grad(), which stilll
has to go through the underlying computational graph related to the
expression.





	Parameters:	x – A Theano expression whose gradient should not be
backpropagated through.


	Returns:	The expression is returned unmodified, but its gradient
is now effectively truncated to 0.










	
theano.gradient.format_as(use_list, use_tuple, outputs)

	Formats the outputs according to the flags use_list and use_tuple.
If use_list is True, outputs is returned as a list (if outputs
is not a list or a tuple then it is converted in a one element list).
If use_tuple is True, outputs is returned as a tuple (if outputs
is not a list or a tuple then it is converted into a one element tuple).
Otherwise (if both flags are false), outputs is returned.






	
theano.gradient.grad(cost, wrt, consider_constant=None, disconnected_inputs='raise', add_names=True, known_grads=None, return_disconnected='zero')

	Return symbolic gradients for one or more variables with respect to some
cost.

For more information about how automatic differentiation works in Theano,
see gradient. For information on how to implement the gradient of
a certain Op, see grad().





	Parameters:	
	cost (Scalar (0-dimensional) tensor variable.
May optionally be None if known_grads is provided.) – a scalar with respect to which we are differentiating

	wrt (Tensor variable or list of variables.) – term[s] for which we want gradients

	consider_constant (list of variables) – a list of expressions not to backpropagate
through

	disconnected_inputs (string) – Defines the behaviour if some of the variables
in wrt are not part of the computational graph computing cost
(or if all links are non-differentiable). The possible values are:
- ‘ignore’: considers that the gradient on these parameters is zero.
- ‘warn’: consider the gradient zero, and print a warning.
- ‘raise’: raise DisconnectedInputError.

	add_names (bool) – If True, variables generated by grad will be named
(d<cost.name>/d<wrt.name>) provided that both cost and wrt have
names

	known_grads (dict) – If not None, a dictionary mapping variables to their
gradients. This is useful in the case where you know the
gradient on some variables but do not know the original
cost.

	return_disconnected (string) – 
	
	‘zero’ : If wrt[i] is disconnected, return value i will be

	wrt[i].zeros_like()





	
	‘None’ : If wrt[i] is disconnected, return value i will be

	None





	‘Disconnected’ : returns variables of type DisconnectedType










	Return type:	variable or list/tuple of Variables (matching wrt)




	Returns:	symbolic expression of gradient of cost with respect to each
of the wrt terms.
If an element of wrt is not differentiable with respect
to the output, then a zero variable is returned.
It returns an object of same type as wrt: a list/tuple
or Variable in all cases.












	
theano.gradient.grad_clip(x, lower_bound, upper_bound)

	This op do a view in the forward, but clip the gradient.

This is an elemwise operation.





	Parameters:	
	x – the variable we want its gradient inputs clipped

	lower_bound – The lower bound of the gradient value

	upper_bound – The upper bound of the gradient value.






	Examples:	x = theano.tensor.scalar()

z = theano.tensor.grad(grad_clip(x, -1, 1)**2, x)
z2 = theano.tensor.grad(x**2, x)

f = theano.function([x], outputs = [z, z2])

print f(2.0)  # output (1.0, 4.0)




	Note:	We register an opt in tensor/opt.py that remove the GradClip.
So it have 0 cost in the forward and only do work in the grad.












	
theano.gradient.grad_not_implemented(op, x_pos, x, comment='')

	Return an un-computable symbolic variable of type x.type.

If any call to tensor.grad results in an expression containing this
un-computable variable, an exception (NotImplementedError) will be
raised indicating that the gradient on the
x_pos‘th input of op has not been implemented. Likewise if
any call to theano.function involves this variable.

Optionally adds a comment to the exception explaining why this
gradient is not implemented.






	
theano.gradient.grad_undefined(op, x_pos, x, comment='')

	Return an un-computable symbolic variable of type x.type.

If any call to tensor.grad results in an expression containing this
un-computable variable, an exception (GradUndefinedError) will be
raised indicating that the gradient on the
x_pos‘th input of op is mathematically undefined. Likewise if
any call to theano.function involves this variable.

Optionally adds a comment to the exception explaining why this
gradient is not defined.






	
theano.gradient.hessian(cost, wrt, consider_constant=None, disconnected_inputs='raise')

	



	Parameters:	
	consider_constant – a list of expressions not to backpropagate
through

	disconnected_inputs (string) – Defines the behaviour if some of the variables
in wrt are not part of the computational graph computing cost
(or if all links are non-differentiable). The possible values are:
- ‘ignore’: considers that the gradient on these parameters is zero.
- ‘warn’: consider the gradient zero, and print a warning.
- ‘raise’: raise an exception.






	Returns:	either a instance of Variable or list/tuple of Variables
(depending upon wrt) repressenting the Hessian of the cost
with respect to (elements of) wrt. If an element of wrt is not
differentiable with respect to the output, then a zero
variable is returned. The return value is of same type
as wrt: a list/tuple or TensorVariable in all cases.












	
theano.gradient.jacobian(expression, wrt, consider_constant=None, disconnected_inputs='raise')

	



	Parameters:	
	consider_constant – a list of expressions not to backpropagate
through

	disconnected_inputs (string) – Defines the behaviour if some of the variables
in wrt are not part of the computational graph computing cost
(or if all links are non-differentiable). The possible values are:
- ‘ignore’: considers that the gradient on these parameters is zero.
- ‘warn’: consider the gradient zero, and print a warning.
- ‘raise’: raise an exception.






	Returns:	either a instance of Variable or list/tuple of Variables
(depending upon wrt) repesenting the jacobian of expression
with respect to (elements of) wrt. If an element of wrt is not
differentiable with respect to the output, then a zero
variable is returned. The return value is of same type
as wrt: a list/tuple or TensorVariable in all cases.












	
class theano.gradient.numeric_grad(f, pt, eps=None, out_type=None)

	Compute the numeric derivative of a scalar-valued function at a particular
point.


	
static abs_rel_err(a, b)

	Return absolute and relative error between a and b.

The relative error is a small number when a and b are close, relative
to how big they are.


	Formulas used:

	abs_err = abs(a - b)
rel_err = abs_err / max(abs(a) + abs(b), 1e-8)



The denominator is clipped at 1e-8 to avoid dividing by 0 when a and b
are both close to 0.

The tuple (abs_err, rel_err) is returned






	
abs_rel_errors(g_pt)

	Return the abs and rel error of gradient estimate g_pt

g_pt must be a list of ndarrays of the same length as self.gf,
otherwise a ValueError is raised.

Corresponding ndarrays in g_pt and self.gf must have the same
shape or ValueError is raised.






	
max_err(g_pt, abs_tol, rel_tol)

	Find the biggest error between g_pt and self.gf.

What is measured is the violation of relative and absolute errors,
wrt the provided tolerances (abs_tol, rel_tol).
A value > 1 means both tolerances are exceeded.

Return the argmax of min(abs_err / abs_tol, rel_err / rel_tol) over
g_pt, as well as abs_err and rel_err at this point.










	
theano.gradient.subgraph_grad(wrt, end, start=None, cost=None, details=False)

	With respect to wrt, computes gradients of cost and/or from
existing start gradients, up to the end variables of a
symbolic digraph.  In other words, computes gradients for a
subgraph of the symbolic theano function. Ignores all disconnected
inputs.

This can be useful when one needs to perform the gradient descent
iteratively (e.g. one layer at a time in an MLP), or when a
particular operation is not differentiable in theano
(e.g. stochastic sampling from a multinomial). In the latter case,
the gradient of the non-differentiable process could be
approximated by user-defined formula, which could be calculated
using the gradients of a cost with respect to samples (0s and
1s). These gradients are obtained by performing a subgraph_grad
from the cost or previously known gradients (start) up to the
outputs of the stochastic process (end).  A dictionary mapping
gradients obtained from the user-defined differentiation of the
process, to variables, could then be fed into another
subgraph_grad as start with any other cost (e.g. weight
decay).

In an MLP, we could use subgraph_grad to iteratively backpropagate:

x, t = theano.tensor.fvector('x'), theano.tensor.fvector('t')
w1 = theano.shared(np.random.randn(3,4))
w2 = theano.shared(np.random.randn(4,2))
a1 = theano.tensor.tanh(theano.tensor.dot(x,w1))
a2 = theano.tensor.tanh(theano.tensor.dot(a1,w2))
cost2 = theano.tensor.sqr(a2 - t).sum()
cost2 += theano.tensor.sqr(w2.sum())
cost1 = theano.tensor.sqr(w1.sum())

params = [[w2],[w1]]
costs = [cost2,cost1]
grad_ends = [[a1], [x]]

next_grad = None
param_grads = []
for i in xrange(2):
    param_grad, next_grad = theano.subgraph_grad(
        wrt=params[i], end=grad_ends[i],
        start=next_grad, cost=costs[i]
    )
    next_grad = dict(zip(grad_ends[i], next_grad))
    param_grads.extend(param_grad)









	Parameters:	
	wrt (list of variables) – Gradients are computed with respect to wrt.

	end (list of variables) – Theano variables at which to end gradient descent (they are
considered constant in theano.grad).  For convenience, the
gradients with respect to these variables are also returned.

	start (dictionary of variables) – If not None, a dictionary mapping variables to their
gradients. This is useful when the gradient on some variables
are known. These are used to compute the gradients backwards up
to the variables in end (they are used as known_grad in
theano.grad).

	cost (scalar (0-dimensional) variable) – Additional costs for which to compute the gradients.  For
example, these could be weight decay, an l1 constraint, MSE,
NLL, etc. May optionally be None if start is provided.  Warning
: If the gradients of cost with respect to any of the start
variables is already part of the start dictionary, then it may
be counted twice with respect to wrt and end.


Warning

If the gradients of cost with respect to any of the start
variables is already part of the start dictionary, then it
may be counted twice with respect to wrt and end.





	details (bool) – When True, additionally returns the list of gradients from
start and of cost, respectively, with respect to wrt (not
end).






	Return type:	Tuple of 2 or 4 Lists of Variables




	Returns:	Returns lists of gradients with respect to wrt and end,
respectively.








New in version 0.7.








	
theano.gradient.verify_grad(fun, pt, n_tests=2, rng=None, eps=None, out_type=None, abs_tol=None, rel_tol=None, mode=None, cast_to_output_type=False)

	Test a gradient by Finite Difference Method. Raise error on failure.


	Example:

	>>> verify_grad(theano.tensor.tanh,
                (numpy.asarray([[2,3,4], [-1, 3.3, 9.9]]),),
                rng=numpy.random)









Raises an Exception if the difference between the analytic gradient and
numerical gradient (computed through the Finite Difference Method) of a
random projection of the fun’s output to a scalar exceeds the given
tolerance.





	Parameters:	
	fun – a Python function that takes Theano variables as inputs,
and returns a Theano variable. For instance, an Op instance with
a single output.

	pt – the list of numpy.ndarrays to use as input values.
These arrays must be either float32 or float64 arrays.

	n_tests – number of times to run the test

	rng – random number generator used to sample u, we test gradient
of sum(u * fun) at pt

	eps – stepsize used in the Finite Difference Method (Default
None is type-dependent)
Raising the value of eps can raise or lower the absolute and
relative errors of the verification depending on the
Op. Raising eps does not lower the verification quality
for linear operations. It
is better to raise eps than raising abs_tol or rel_tol.

	out_type – dtype of output, if complex (i.e. ‘complex32’ or
‘complex64’)

	abs_tol – absolute tolerance used as threshold for gradient
comparison

	rel_tol – relative tolerance used as threshold for gradient
comparison

	cast_to_output_type – if the output is float32 and
cast_to_output_type is True, cast the random projection to
float32. Otherwise it is float64.






	Note:	WARNING to unit-test writers: if op is a function that builds
a graph, try to make it a SMALL graph.  Often verify grad is run
in debug mode, which can be very slow if it has to verify a lot of
intermediate computations.




	Note:	This function does not support multiple outputs. In
tests/test_scan.py there is an experimental verify_grad that
covers that case as well by using random projections.












	
theano.gradient.zero_grad(x)

	Consider an expression constant when computing gradients.

The expression itself is unaffected, but when its gradient is
computed, or the gradient of another expression that this
expression is a subexpression of, it will be backpropagated
through with a value of zero. In other words, the gradient of
the expression is truncated to 0.





	Parameters:	x – A Theano expression whose gradient should be truncated.


	Returns:	The expression is returned unmodified, but its gradient
is now truncated to 0.
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config – Theano Configuration


Guide

The config module contains many attributes that modify Theano’s behavior.  Many of these
attributes are consulted during the import of the theano module and many are assumed to be
read-only.

As a rule, the attributes in this module should not be modified by user code.

Theano’s code comes with default values for these attributes, but you can
override them from your .theanorc file, and override those values in turn by
the THEANO_FLAGS environment variable.

The order of precedence is:


	an assignment to theano.config.<property>

	an assignment in THEANO_FLAGS

	an assignment in the .theanorc file (or the file indicated in THEANORC)



You can print out the current/effective configuration at any time by printing
theano.config.  For example, to see a list  of all active configuration
variables, type this from the command-line:

python -c 'import theano; print theano.config' | less








Environment Variables


	
THEANO_FLAGS

	This is a list of comma-delimited key=value pairs that control
Theano’s behavior.

For example, in bash, you can override your THEANORC defaults
for <myscript>.py by typing this:

THEANO_FLAGS='floatX=float32,device=gpu0,nvcc.fastmath=True'  python <myscript>.py





If a value is defined several times in THEANO_FLAGS,
the right-most definition is used. So, for instance, if
THEANO_FLAGS='device=cpu,device=gpu0', then gpu0 will be used.






	
THEANORC

	The location[s] of the .theanorc file[s] in ConfigParser format.
It defaults to $HOME/.theanorc. On Windows, it defaults to
$HOME/.theanorc:$HOME/.theanorc.txt to make Windows users’ life
easier.

Here is the .theanorc equivalent to the THEANO_FLAGS in the example above:

[global]
floatX = float32
device = gpu0

[nvcc]
fastmath = True





Configuration attributes that are available directly in config
(e.g. config.device, config.mode) should be defined in the
[global] section.
Attributes from a subsection of config (e.g. config.nvcc.fastmath,
config.blas.ldflags) should be defined in their corresponding section
(e.g. [nvcc], [blas]).

Multiple configuration files can be specified by separating them with ‘:’
characters (as in $PATH).  Multiple configuration files will be merged,
with later (right-most) files taking priority over earlier files in the
case that multiple files specify values for a common configuration option.
For example, to override system-wide settings with personal ones,
set THEANORC=/etc/theanorc:~/.theanorc.








Config Attributes

The list below describes some of the more common and important flags
that you might want to use. For the complete list (including documentation),
import theano and print the config variable, as in:

python -c 'import theano; print theano.config' | less






	
config.device

	String value: either 'cpu', 'gpu', 'gpu0', 'gpu1',
'gpu2', or 'gpu3'

Default device for computations. If gpu*, change the default to try
to move computation to it and to put shared variable of float32 on
it.
Choose the default compute device for theano graphs.  Setting this to a
gpu* string will make theano to try by default to move computation to it.
Also it will make theano put by default shared variable of float32 on it.
'gpu' lets the driver select the GPU to use, while 'gpu?' makes Theano try
to use a specific device. If we are not able to use the GPU, either we fall back
on the CPU, or an error is raised, depending on the force_device flag.

This flag’s value cannot be modified during the program execution.

Do not use upper case letters, only lower case even if NVIDIA use
capital letters.






	
config.force_device

	Bool value: either True or False

Default: False

If True and device=gpu*, we raise an error if we cannot
use the specified device. If True and device=cpu,
we disable the GPU.  If False and device=gpu*, and if the
specified device cannot be used, we warn and fall back to the CPU.

This is useful to run Theano’s tests on a computer with a GPU, but
without running the GPU tests.

This flag’s value cannot be modified during the program execution.






	
config.init_gpu_device

	String value: either '', 'gpu', 'gpu0', 'gpu1', 'gpu2',
or 'gpu3'

Initialize the gpu device to use.
When its value is gpu*, the theano flag device must be "cpu".
Unlike device, setting this flag to a specific GPU will not
try to use this device by default, in particular it will not move
computations, nor shared variables, to the specified GPU.

This flag is useful to run GPU-specific tests on a particular GPU, instead
of using the default one.

This flag’s value cannot be modified during the program execution.






	
config.pycuda.init

	Bool value: either True or False

Default: False

If True, always initialize PyCUDA when Theano want to initialize
the GPU.  With PyCUDA version 2011.2.2 or earlier, PyCUDA must
initialize the GPU before Theano does it.  Setting
this flag to True, ensure that, but always import PyCUDA.  It can
be done manually by importing theano.misc.pycuda_init before
Theano initialize the GPU device.  Newer version of PyCUDA
(currently only in the trunk) don’t have this restriction.






	
config.print_active_device

	Bool value: either True or False

Default: True

Print active device at when the GPU device is initialized.






	
config.floatX

	String value: either ‘float64’ or ‘float32’

Default: ‘float64’

This sets the default dtype returned by tensor.matrix(), tensor.vector(),
and similar functions.  It also sets the default theano bit width for
arguments passed as Python floating-point numbers.






	
config.warn_float64

	String value: either ‘ignore’, ‘warn’, ‘raise’ or ‘pdb’

Default: ‘ignore’

When creating a TensorVariable with dtype float64, what should be done?
This is useful to help find upcast to float64 in user code.






	
config.allow_gc

	Bool value: either True or False

Default: True

This sets the default for the use of the Theano garbage collector
for intermediate results. To use less memory, Theano frees the
intermediate results as soon as they are no longer needed.
Disabling Theano garbage collection allows Theano to reuse buffers
for intermediate results between function calls. This speeds up
Theano by no longer spending time reallocating space. This gives
significant speed up on functions with many ops that are fast to
execute, but this increases Theano’s memory usage.






	
config.openmp

	Bool value: either True or False


	Default: True if the environment variable OMP_NUM_THREADS!=1 or

	if we detect more than 1 CPU core. Otherwise False.



Enable or not parallel computation on the CPU with OpenMP.
It is the default value used when creating an Op that support it.
The best is to define it via Theano configuration
file or with the environment variable THEANO_FLAGS.






	
config.openmp_elemwise_minsize

	Positive int value, default: 200000.

This specifies the vectors minimum size for which elemwise ops
use openmp, if openmp is enabled.






	
config.cast_policy

	String value: either ‘numpy+floatX’ or ‘custom’

Default: ‘custom’

This specifies how data types are implicitly figured out in Theano, e.g. for
constants or in the results of arithmetic operations. The ‘custom’ value
corresponds to a set of custom rules originally used in
Theano (which can be partially customized, see e.g. the in-code help of
tensor.NumpyAutocaster), and will be deprecated in the future.
The ‘numpy+floatX’ setting attempts to mimic the numpy casting rules,
although it prefers to use float32 numbers instead of float64 when
config.floatX is set to ‘float32’ and the user uses data that is not
explicitly typed as float64 (e.g. regular Python floats).
Note that ‘numpy+floatX’ is not currently behaving exactly as planned (it
is a work-in-progress), and thus you should consider it as experimental.
At the moment it behaves differently from numpy in the following
situations:


	Depending on the value of config.int_division, the resulting type
of a division of integer types with the / operator may not match
that of numpy.

	On mixed scalar / array operations, numpy tries to prevent the scalar
from upcasting the array’s type unless it is of a fundamentally
different type. Theano does not attempt to do the same at this point,
so you should be careful that scalars may upcast arrays when they
would not when using numpy. This behavior should change in the near
future.








	
config.int_division

	String value: either ‘int’, ‘floatX’ or ‘raise’

Default: ‘int’

Specifies what to do when one tries to compute x / y, where both x and
y are of integer types (possibly unsigned). ‘int’ means an integer is
returned (as in Python 2.X), but this behavior is deprecated. ‘floatX’
returns a number of type given by config.floatX. ‘raise’ is the safest
choice (and will become default in a future release of Theano) and raises
an error when one tries to do such an operation, enforcing the use of the
integer division operator (//) (if a float result is intended, either
cast one of the arguments to a float, or use x.__truediv__(y)).






	
config.mode

	String value: ‘Mode’, ‘ProfileMode’(deprecated), ‘DebugMode’, ‘FAST_RUN’,
‘FAST_COMPILE’

Default ‘Mode’

This sets the default compilation mode for theano functions. By default the
mode Mode is equivalent to FAST_RUN. See Config attribute linker and optimizer.






	
config.profile

	Bool value: either True or False

Default False

Do the vm/cvm linkers profile the execution time of Theano functions?

See Profiling Theano function for examples.






	
config.profile_memory

	Bool value: either True or False

Default False

Do the vm/cvm linkers profile the memory usage of Theano functions?
It only works when profile=True.






	
config.profile_optimizer

	Bool value: either True or False

Default False

Do the vm/cvm linkers profile the optimization phase when compiling a Theano function?
It only works when profile=True.






	
config.profiling.n_apply

	Positive int value, default: 20.

The number of Apply nodes to print in the profiler output






	
config.profiling.n_ops

	Positive int value, default: 20.

The number of Ops to print in the profiler output






	
config.profiling.min_memory_size

	Positive int value, default: 1024.

For the memory profile, do not print Apply nodes if the size
of their outputs (in bytes) is lower than this.






	
config.profiling.min_peak_memory

	Bool value: either True or False

Default False

Does the memory profile print the min peak memory usage?
It only works when profile=True, profile_memory=True






	
config.profiling.destination

	String value: ‘stderr’, ‘stdout’, or a name of a
file to be created

Default ‘stderr’

Name of the destination file for the profiling output.
The profiling output can be either directed to stderr
(default), or stdout or an arbitrary file.






	
config.lib.amdlibm

	Bool value: either True or False

Default False

This makes the compilation use the
amdlibm [http://developer.amd.com/cpu/libraries/libm/]
library, which is faster than the standard libm.






	
config.linker

	String value: ‘c|py’, ‘py’, ‘c’, ‘c|py_nogc’

Default: ‘c|py’

When the mode is Mode, it sets the default linker used.
See Configuration Settings and Compiling Modes for a comparison of the different linkers.






	
config.optimizer

	String value: ‘fast_run’, ‘merge’, ‘fast_compile’, ‘None’

Default: ‘fast_run’

When the mode is Mode, it sets the default optimizer used.






	
config.on_opt_error

	String value: ‘warn’, ‘raise’ or ‘pdb’

Default: ‘warn’

When a crash occurs while trying to apply some optimization, either warn
the user and skip this optimization (‘warn’), raise the exception
(‘raise’), or fall into the pdb debugger (‘pdb’).






	
config.on_shape_error

	String value: ‘warn’ or ‘raise’

Default: ‘warn’

When an exception is raised when inferring the shape of some apply
node, either warn the user and use a default value (‘warn’), or
raise the exception (‘raise’).






	
config.warn.ignore_bug_before

	String value: ‘None’, ‘all’, ‘0.3’, ‘0.4’, ‘0.4.1’, ‘0.5’, ‘0.6’, ‘0.7’

Default: ‘0.6’

When we fix a Theano bug that generated bad results under some
circumstances, we also make Theano raise a warning when it encounters
the same circumstances again. This helps to detect if said bug
had affected your past experiments, as you only need to run your
experiment again with the new version, and you do not have to
understand the Theano internal that triggered the bug. A better
way to detect this will be implemented. See this ticket [http://www.assembla.com/spaces/theano/tickets/514].

This flag allows new users not to get warnings about old bugs, that were
fixed before their first checkout of Theano.
You can set its value to the first version of Theano
that you used (probably 0.3 or higher)

None means that all warnings will be displayed.
all means all warnings will be ignored.

It is recommended that you put a version, so that you will see future
warnings.
It is also recommended you put this into your .theanorc, so this setting
will always be used.

This flag’s value cannot be modified during the program execution.






	
config.base_compiledir

	Default: On Windows: $LOCALAPPDATA\Theano if $LOCALAPPDATA is defined,
otherwise and on other systems: ~/.theano.

This directory stores the platform-dependent compilation directories.

This flag’s value cannot be modified during the program execution.






	
config.compiledir_format

	Default: “compiledir_%(platform)s-%(processor)s-%(python_version)s-%(python_bitwidth)s”

This is a Python format string that specifies the subdirectory
of config.base_compiledir in which to store platform-dependent
compiled modules. To see a list of all available substitution keys,
run python -c "import theano; print theano.config", and look
for compiledir_format.

This flag’s value cannot be modified during the program execution.






	
config.compiledir

	Default: config.base_compiledir/config.compiledir_format

This directory stores dynamically-compiled modules for a particular
platform.

This flag’s value cannot be modified during the program execution.






	
config.blas.ldflags

	Default: ‘-lblas’

Link arguments to link against a (Fortran) level-3 blas
implementation.  The default will test if ‘-lblas’ work. If not,
we will disable our c code for BLAS.






	
config.experimental.local_alloc_elemwise_assert

	Bool value: either True or False

Default: True

When the local_alloc_optimization is applied, add an assert to highlight
shape errors.

Without such asserts this optimization could hide errors in the user code.
We add the assert only if we can’t infer that the shapes are equivalent.
As such this optimization does not always introduce an assert in the graph.
Removing the assert could speed up execution.






	
config.cuda.root

	Default: $CUDA_ROOT or failing that, “/usr/local/cuda”

A directory with bin/, lib/, include/ folders containing cuda utilities.






	
config.dnn.conv.workmem

	String value: ‘none’, ‘small’, ‘large’

Default: ‘small’

The default value for the amount of working memory that is
tolerated in the convolution implementation in cudnn.


	‘none’

	Don’t allow any extra memory.

	‘small’

	Allow extra memory that is much smaller than the input sizes.

	‘large’

	Allow extra memory that is on the order of the input sizes.








	
config.gcc.cxxflags

	Default: “”

Extra parameters to pass to gcc when compiling.  Extra include paths,
library paths, configuration options, etc.






	
config.cxx

	Default: Full path to g++ if g++ is present. Empty string otherwise.

Indicates which C++ compiler to use. If empty, no C++ code is
compiled.  Theano automatically detects whether g++ is present and
disables C++ compilation when it is not.  On darwin systems (Mac
OS X), it preferably looks for clang++ and uses that if available.

We print a warning if we detect that no compiler is present. It is
recommended to run with C++ compilation as Theano will be much
slower otherwise.

This can be any compiler binary (full path or not) but things may
break if the interface is not g++-compatible to some degree.






	
config.nvcc.fastmath

	Default: False

If true, this will enable fastmath (–use_fast_math [http://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/#options-for-steering-cuda-compilation])
mode for compiled cuda code which makes div and sqrt faster at the
cost of precision.  This also disables support for denormal
numbers.






	
config.optimizer_excluding

	Default: “”

A list of optimizer tags that we don’t want included in the default Mode.
If multiple tags, separate them by ‘:’.
Ex: to remove the elemwise inplace optimizer(slow for big graph),
use the flags: optimizer_excluding:inplace_opt, where
inplace_opt is the name of that optimization.

This flag’s value cannot be modified during the program execution.






	
config.optimizer_including

	Default: “”

A list of optimizer tags that we want included in the default Mode.
If multiple tags, separate them by ‘:’.

This flag’s value cannot be modified during the program execution.






	
config.optimizer_requiring

	Default: “”

A list of optimizer tags that we require for optimizer in the default Mode.
If multiple tags, separate them by ‘:’.

This flag’s value cannot be modified during the program execution.






	
config.optimizer_verbose

	Bool value: either True or False

Default: False

When True, we print on the stdout the optimization applied.






	
config.nocleanup

	Bool value: either True or False

Default: False

If False, source code files are removed when they are not needed anymore.
This means files whose compilation failed are deleted.
Set to True to keep those files in order to debug compilation errors.






	
config.compile

	This section contains attributes which influence the compilation of
C code for ops.  Due to historical reasons many attributes outside
of this section also have an influence over compilation, most
notably ‘cxx’.  This is not expected to change any time soon.






	
config.compile.timeout

	Positive int value, default: compile.wait * 24

Time to wait before an unrefreshed lock is broken and stolen.  This
is in place to avoid manual cleanup of locks in case a process
crashed and left a lock in place.

The refresh time is automatically set to half the timeout value.






	
config.compile.wait

	Positive int value, default: 5

Time to wait between attempts at grabbing the lock if the first
attempt is not successful. The actual time will be between
compile.wait and compile.wait * 2 to avoid a
crowding effect on lock.






	
config.DebugMode

	This section contains various attributes configuring the behaviour
of mode DebugMode. See directly this section
for the documentation of more configuration options.






	
config.DebugMode.check_preallocated_output

	Default: ''

A list of kinds of preallocated memory to use as output buffers for
each Op’s computations, separated by :. Implemented modes are:


	"initial": initial storage present in storage map
(for instance, it can happen in the inner function of Scan),

	"previous": reuse previously-returned memory,

	"c_contiguous": newly-allocated C-contiguous memory,

	"f_contiguous": newly-allocated Fortran-contiguous memory,

	"strided": non-contiguous memory with various stride patterns,

	"wrong_size": memory with bigger or smaller dimensions,

	"ALL": placeholder for all of the above.



In order not to test with preallocated memory, use an empty string, "".






	
config.DebugMode.check_preallocated_output_ndim

	Positive int value, default: 4.

When testing with “strided” preallocated output memory, test
all combinations of strides over that number of (inner-most)
dimensions. You may want to reduce that number to reduce memory or
time usage, but it is advised to keep a minimum of 2.






	
config.DebugMode.warn_input_not_reused

	Bool value, default: True

Generate a warning when the destroy_map or view_map tell that an op work
inplace, but the op did not reuse the input for its output.






	
config.numpy

	This section contains different attributes for configuring numpy’s
behaviour, described by numpy.seterr [http://docs.scipy.org/doc/numpy/reference/generated/numpy.seterr.html].






	
config.numpy.seterr_all

	String Value: 'ignore', 'warn', 'raise', 'call',
'print', 'log', 'None'

Default: 'ignore'

Set the default behaviour described by numpy.seterr [http://docs.scipy.org/doc/numpy/reference/generated/numpy.seterr.html].

'None' means that numpy’s default behaviour will not be changed (unless
one of the other config.numpy.seterr_* overrides it), but this behaviour
can change between numpy releases.

This flag sets the default behaviour for all kinds of floating-pont
errors, and it can be overriden for specific errors by setting one
(or more) of the flags below.

This flag’s value cannot be modified during the program execution.






	
config.numpy.seterr_divide

	String Value: 'None', 'ignore', 'warn', 'raise',
'call', 'print', 'log'

Default: 'None'

Sets numpy’s behavior for division by zero. 'None' means using the
default, defined by config.numpy.seterr_all.

This flag’s value cannot be modified during the program execution.






	
config.numpy.seterr_over

	String Value: 'None', 'ignore', 'warn', 'raise',
'call', 'print', 'log'

Default: 'None'

Sets numpy’s behavior for floating-point overflow. 'None' means
using the default, defined by config.numpy.seterr_all.

This flag’s value cannot be modified during the program execution.






	
config.numpy.seterr_under

	String Value: 'None', 'ignore', 'warn', 'raise',
'call', 'print', 'log'

Default: 'None'

Sets numpy’s behavior for floating-point underflow. 'None' means
using the default, defined by config.numpy.seterr_all.

This flag’s value cannot be modified during the program execution.






	
config.numpy.seterr_invalid

	String Value: 'None', 'ignore', 'warn', 'raise',
'call', 'print', 'log'

Default: 'None'

Sets numpy’s behavior for invalid floating-point operation. 'None'
means using the default, defined by config.numpy.seterr_all.

This flag’s value cannot be modified during the program execution.






	
config.compute_test_value

	String Value: 'off', 'ignore', 'warn', 'raise'.

Default: 'off'

Setting this attribute to something other than 'off' activates a
debugging mechanism, where Theano executes the graph on-the-fly, as it is
being built. This allows the user to spot errors early on (such as
dimension mis-match), before optimizations are applied.

Theano will execute the graph using the Constants and/or shared variables
provided by the user. Purely symbolic variables (e.g. x = T.dmatrix()) can be
augmented with test values, by writing to their 'tag.test_value'
attribute (e.g. x.tag.test_value = numpy.random.rand(5,4)).

When not 'off', the value of this option dictates what happens when
an Op’s inputs do not provide appropriate test values:



	'ignore' will silently skip the debug mechanism for this Op

	'warn' will raise a UserWarning and skip the debug mechanism for
this Op

	'raise' will raise an Exception











	
config.compute_test_value_opt

	As compute_test_value, but it is the value used during Theano
optimization phase. Theano user’s do not need to use this. This is
to help debug shape error in Theano optimization.






	
config.reoptimize_unpickled_function

	Bool value, default: True

Theano users can use the standard python pickle tools to save a compiled
theano function. When pickling, both graph before and after the optimization
are saved, including shared variables. When set to True, the graph is
reoptimized when being unpickled. Otherwise, skip the graph optimization and
use directly the optimized graph.






	
config.exception_verbosity

	String Value: 'low', 'high'.

Default: 'low'

If 'low', the text of exceptions will generally refer to apply nodes
with short names such as 'Elemwise{add_no_inplace}'. If 'high',
some exceptions will also refer to apply nodes with long descriptions like:

A. Elemwise{add_no_inplace}
      B. log_likelihood_v_given_h
      C. log_likelihood_h










	
config.cmodule.warn_no_version

	Bool value, default: False

If True, will print a warning when compiling one or more Op with C
code that can’t be cached because there is no c_code_cache_version()
function associated to at least one of those Ops.






	
config.cmodule.mac_framework_link

	Bool value, default: False

If set to True, breaks certain MacOS installations with the infamous
Bus Error.






	
config.cmodule.remove_gxx_opt

	Bool value, default: False

If True, will remove the -O* parameter passed to g++.
This is useful to debug in gdb modules compiled by Theano.
The parameter -g is passed by default to g++.






	
config.cmodule.compilation_warning

	Bool value, default: False

If True, will print compilation warnings.






	
config.cmodule.preload_cache

	Bool value, default: False

If set to True, will preload the C module cache at import time
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printing – Graph Printing and Symbolic Print Statement


Guide


Printing during execution

Intermediate values in a computation cannot be printed in
the normal python way with the print statement, because Theano has no statements.
Instead there is the Print Op.

>>> x = T.dvector()
>>> hello_world_op = printing.Print('hello world')
>>> printed_x = hello_world_op(x)
>>> f = function([x], printed_x)
>>> f([1, 2, 3])
>>> # output: "hello world __str__ = [ 1.  2.  3.]"





If you print more than one thing in a function like f, they will not
necessarily be printed in the order that you think.  The order might even depend
on which graph optimizations are applied. Strictly speaking, the order of
printing is not completely defined by the interface –
the only hard rule is that if the input of some print output a is
ultimately used as an input to some other print input b (so that b depends on a),
then a will print before b.




Printing graphs

Theano provides two functions (theano.pp() and
theano.printing.debugprint()) to print a graph to the terminal before or after
compilation.  These two functions print expression graphs in different ways:
pp() is more compact and math-like, debugprint() is more verbose.
Theano also provides theano.printing.pydotprint() that creates a png image of the function.


	The first is theano.pp().



>>> x = T.dscalar('x')
>>> y = x ** 2
>>> gy = T.grad(y, x)
>>> pp(gy)  # print out the gradient prior to optimization
'((fill((x ** 2), 1.0) * 2) * (x ** (2 - 1)))'
>>> f = function([x], gy)
>>> pp(f.maker.fgraph.outputs[0])
'(2.0 * x)'





The parameter in T.dscalar(‘x’) in the first line is the name of this variable
in the graph. This name is used when printing the graph to make it more readable.
If no name is provided the variable x is printed as its type as returned by
x.type(). In this example - <TensorType(float64, scalar)>.

The name parameter can be any string. There are no naming restrictions:
in particular, you can have many variables with the same name.
As a convention, we generally give variables a string name that is similar to the name of the variable in local scope, but
you might want to break this convention to include an object instance, or an
iteration number or other kinds of information in the name.


Note

To make graphs legible, pp() hides some Ops that are actually in the graph.  For example,
automatic DimShuffles are not shown.




	The second function to print a graph is theano.printing.debugprint()



>>> theano.printing.debugprint(f.maker.fgraph.outputs[0])
Elemwise{mul,no_inplace} [@A] ''
 |TensorConstant{2.0} [@B]
 |x [@C]





Each line printed represents a Variable in the graph.
The line |x [@C means the variable named x with debugprint identifier
[@C] is an input of the Elemwise.  If you accidentally have two variables called x in
your graph, their different debugprint identifier will be your clue.

The line |TensorConstant{2.0} [@B] means that there is a constant 2.0
with this debugprint identifier.

The line Elemwise{mul,no_inplace} [@A] '' is indented less than
the other ones, because it means there is a variable computed by multiplying
the other (more indented) ones together.

The | symbol are just there to help read big graph. The group
together inputs to a node.

Sometimes, you’ll see a Variable but not the inputs underneath.  That can
happen when that Variable has already been printed.  Where else has it been
printed?  Look for debugprint identifier using the Find feature of your text
editor.

>>> theano.printing.debugprint(gy)
Elemwise{mul} [@A] ''
 |Elemwise{mul} [@B] ''
 | |Elemwise{second,no_inplace} [@C] ''
 | | |Elemwise{pow,no_inplace} [@D] ''
 | | | |x [@E]
 | | | |TensorConstant{2} [@F]
 | | |TensorConstant{1.0} [@G]
 | |TensorConstant{2} [@F]
 |Elemwise{pow} [@H] ''
   |x [@E]
   |Elemwise{sub} [@I] ''
     |TensorConstant{2} [@F]
     |InplaceDimShuffle{} [@J] ''
       |TensorConstant{1} [@K]





>>> theano.printing.debugprint(gy, depth=2)
Elemwise{mul} [@A] ''
 |Elemwise{mul} [@B] ''
 |Elemwise{pow} [@C] ''





If the depth parameter is provided, it limits the number of levels that are
shown.


	The function theano.printing.pydotprint() will print a compiled theano function to a png file.



In the image, Apply nodes (the applications of ops) are shown as ellipses and variables are shown as boxes.
The number at the end of each label indicates graph position.
Boxes and ovals have their own set of positions, so you can have apply #1 and also a
variable #1.
The numbers in the boxes (Apply nodes) are actually their position in the
run-time execution order of the graph.
Green ovals are inputs to the graph and blue ovals are outputs.

If your graph uses shared variables, those shared
variables will appear as inputs.  Future versions of the pydotprint()
may distinguish these inplicit inputs from explicit inputs.

If you give updates arguments when creating your function, these are added as
extra inputs and outputs to the graph.
Future versions of pydotprint() may distinguish these
implicit inputs and outputs from explicit inputs and outputs.






Reference


	
class printing.Print(Op)

	This identity-like Op has the side effect of printing a message followed by its inputs
when it runs. Default behaviour is to print the __str__ representation. Optionally, one
can pass a list of the input member functions to execute, or attributes to print.


	
__init__(message="", attrs=("__str__")

	



	Parameters:	
	message (string) – prepend this to the output

	attrs (list of strings) – list of input node attributes or member functions to print.
Functions are
identified through callable(), executed and their return value printed.














	
__call__(x)

	



	Parameters:	x (a Variable) – any symbolic variable


	Returns:	symbolic identity(x)





When you use the return-value from this function in a theano function,
running the function will print the value that x takes in the graph.










	
theano.printing.debugprint(obj, depth=-1, print_type=False, file=None, ids='CHAR', stop_on_name=False)

	Print a computation graph as text to stdout or a file.





	Parameters:	
	obj (Variable, Apply, or Function instance) – symbolic thing to print

	depth (integer) – print graph to this depth (-1 for unlimited)

	print_type (boolean) – whether to print the type of printed objects

	file (None, ‘str’, or file-like object) – print to this file (‘str’ means to return a string)

	ids (str) – How do we print the identifier of the variable
id - print the python id value
int - print integer character
CHAR - print capital character
“” - don’t print an identifier

	stop_on_name – When True, if a node in the graph has a name,
we don’t print anything below it.






	Returns:	string if file == ‘str’, else file arg







Each line printed represents a Variable in the graph.
The indentation of lines corresponds to its depth in the symbolic graph.
The first part of the text identifies whether it is an input
(if a name or type is printed) or the output of some Apply (in which case
the Op is printed).
The second part of the text is an identifier of the Variable.
If print_type is True, we add a part containing the type of the Variable

If a Variable is encountered multiple times in the depth-first search,
it is only printed recursively the first time. Later, just the Variable
identifier is printed.

If an Apply has multiple outputs, then a ‘.N’ suffix will be appended
to the Apply’s identifier, to indicate which output a line corresponds to.






	
theano.pp(*args)

	Just a shortcut to theano.printing.pp()






	
theano.printing.pp(*args)

	Print to the terminal a math-like expression.






	
theano.printing.pydotprint(fct, outfile=None, compact=True, format='png', with_ids=False, high_contrast=True, cond_highlight=None, colorCodes=None, max_label_size=70, scan_graphs=False, var_with_name_simple=False, print_output_file=True, assert_nb_all_strings=-1, return_image=False)

	Print to a file (png format) the graph of a compiled theano function’s ops.





	Parameters:	
	fct – a compiled Theano function, a Variable, an Apply or
a list of Variable.

	outfile – the output file where to put the graph.

	compact – if True, will remove intermediate var that don’t have name.

	format – the file format of the output.

	with_ids – Print the toposort index of the node in the node name.
and an index number in the variable ellipse.

	high_contrast – if true, the color that describes the respective
node is filled with its corresponding color, instead of coloring
the border

	colorCodes – dictionary with names of ops as keys and colors as
values

	cond_highlight – Highlights a lazy if by sorrounding each of the 3
possible categories of ops with a border. The categories
are: ops that are on the left branch, ops that are on the
right branch, ops that are on both branches
As an alternative you can provide the node that represents
the lazy if

	scan_graphs – if true it will plot the inner graph of each scan op
in files with the same name as the name given for the main
file to which the name of the scan op is concatenated and
the index in the toposort of the scan.
This index can be printed with the option with_ids.

	var_with_name_simple – If true and a variable have a name,
we will print only the variable name.
Otherwise, we concatenate the type to the var name.

	assert_nb_all_strings – Used for tests. If non-negative, assert that
the number of unique string nodes in the dot graph is equal to
this number. This is used in tests to verify that dot won’t
merge Theano nodes.

	return_image – If True, it will create the image and return it.
Useful to display the image in ipython notebook.

import theano
v = theano.tensor.vector()
from IPython.display import SVG
SVG(theano.printing.pydotprint(v*2, return_image=True,
                               format='svg'))















In the graph, ellipses are Apply Nodes (the execution of an op)
and boxes are variables.  If variables have names they are used as
text (if multiple vars have the same name, they will be merged in
the graph).  Otherwise, if the variable is constant, we print its
value and finally we print the type + a unique number to prevent
multiple vars from being merged.  We print the op of the apply in
the Apply box with a number that represents the toposort order of
application of those Apply.  If an Apply has more than 1 input, we
label each edge between an input and the Apply node with the
input’s index.

Green boxes are inputs variables to the graph,
blue boxes are outputs variables of the graph,
grey boxes are variables that are not outputs and are not used,
red ellipses are transfers from/to the gpu (ops with names GpuFromHost,
HostFromGpu).

For edges, they are black by default. If a node returns a view
of an input, we put the corresponding input edge in blue. If it
returns a destroyed input, we put the corresponding edge in red.


Note

Since October 20th, 2014, this print the inner function of all
scan separately after the top level debugprint output.
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compile – Transforming Expression Graphs to Functions



	shared - defines theano.shared

	function - defines theano.function

	io - defines theano.function [TODO]

	ops –  Some Common Ops and extra Ops stuff

	mode – controlling compilation

	debugmode
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shared - defines theano.shared


	
class shared.SharedVariable

	Variable with Storage that is shared between functions that it appears in.
These variables are meant to be created by registered shared constructors
(see shared_constructor()).

The user-friendly constructor is shared()


	
value

	Read/write access to the [non-symbolic] value/data associated with this SharedVariable.

Changes to this value will be visible to all functions using this SharedVariable.






	
__init__(self, name, type, value, strict, container=None)

	



	Parameters:	
	name (None or str) – The name for this variable.

	type – The Type for this Variable.

	value – A value to associate with this variable (a new container will be created).

	strict – True -> assignments to self.value will not be casted
or copied, so they must have the correct type or an exception will be
raised.

	container – The container to use for this variable.   This should
instead of the value parameter.  Using both is an error.














	
container

	A container to use for this SharedVariable when it is an implicit function parameter.





	Type:	class:Container














	
theano.compile.sharedvalue.shared(value, name=None, strict=False, allow_downcast=None, **kwargs)

	Return a SharedVariable Variable, initialized with a copy or
reference of value.

This function iterates over
constructor functions
to find a suitable SharedVariable subclass.
The suitable one is the first constructor that accept the given value.

This function is meant as a convenient default.  If you want to use a
specific shared variable constructor, consider calling it directly.

theano.shared is a shortcut to this function.





	Note:	By passing kwargs, you effectively limit the set of
potential constructors to those that can accept those kwargs.


	Note:	Some shared variable have borrow as extra kwargs.
See [http://deeplearning.net/software/theano/tutorial/aliasing.html#borrowing-when-creating-shared-variables] for detail.


	Note:	Some shared variable have broadcastable as extra kwargs.
As shared variable shapes can change, all dimensions default
to not being broadcastable, even if value has a shape of 1
along some dimension. This parameter allows you to create
for example a row or column 2d tensor.






	
shared.constructors

	A list of shared variable constructors that will be tried in reverse
order.










	
shared.shared_constructor(ctor)

	Append ctor to the list of shared constructors (see shared()).

Each registered constructor ctor will be called like this:

ctor(value, name=name, strict=strict, **kwargs)





If it do not support given value, it must raise a TypeError.
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function - defines theano.function


Guide

This module provides function(), commonly accessed as theano.function,
the interface for compiling graphs into callable objects.

You’ve already seen example usage in the basic tutorial... something like this:

>>> x = theano.tensor.dscalar()
>>> f = theano.function([x], 2*x)
>>> print f(4)                    # prints 8.0





The idea here is that we’ve compiled the symbolic graph (2*x) into a function that can be called on a number and will do some computations.

The behaviour of function can be controlled in several ways, such as
Param, mode, updates, and givens.  These are covered
in the tutorial examples and tutorial on modes.




Reference


	
class function.Out

	A class for attaching information to function outputs


	
variable

	A variable in an expression graph to use as a compiled-function
output






	
borrow

	True indicates that a reference to internal storage may be returned, and that the caller is aware that subsequent function evaluations might overwrite this memory.






	
__init__(variable, borrow=False)

	Initialize attributes from arguments.










	
class function.Param

	A class for attaching information to function inputs.


	
variable

	A variable in an expression graph to use as a compiled-function parameter






	
default

	The default value to use at call-time (can also be a Container where
the function will find a value at call-time.)






	
name

	A string to identify an argument for this parameter in keyword arguments.






	
mutable

	True means the compiled-function is allowed to modify this
argument. False means it is not allowed.






	
strict

	If False, a function argument may be copied or cast to match the type
required by the parameter variable.  If True, a function argument
must exactly match the type required by variable.






	
__init__(self, variable, default=None, name=None, mutable=False, strict=False)

	Initialize object attributes.










	
function.function(inputs, outputs, mode=None, updates=None, givens=None, no_default_updates=False, accept_inplace=False, name=None, rebuild_strict=True, allow_input_downcast=None, profile=None, on_unused_input='raise')

	Return a callable object that will calculate outputs from inputs.





	Parameters:	
	params (list of either Variable or Param instances, but not shared
variables.) – the returned Function instance will have
parameters for these variables.

	outputs (list of Variables or Out instances) – expressions to compute.

	mode (None, string or Mode instance.) – compilation mode

	updates (iterable over pairs (shared_variable, new_expression).
List, tuple or dict.) – expressions for new SharedVariable values

	givens (iterable over pairs (Var1, Var2) of Variables.
List, tuple or dict.  The Var1
and Var2 in each pair must have the same Type.) – specific substitutions to make in the
computation graph (Var2 replaces Var1).

	no_default_updates (either bool or list of Variables) – if True, do not perform any automatic update on Variables.
If False (default), perform them all.
Else, perform automatic updates on all Variables that are
neither in updates nor in no_default_updates.

	name – an optional name for this function.
The profile mode will print the time spent in this function.

	rebuild_strict – True (Default) is the safer and better
tested setting, in which case givens must substitute new
variables with the same Type as the variables they replace.
False is a you-better-know-what-you-are-doing setting, that
permits givens to replace variables with new variables of
any Type.  The consequence of changing a Type is that all
results depending on that variable may have a different Type
too (the graph is rebuilt from inputs to outputs).  If one of
the new types does not make sense for one of the Ops in the
graph, an Exception will be raised.

	allow_input_downcast (Boolean or None) – True means that the values passed as
inputs when calling the function can be silently downcasted to
fit the dtype of the corresponding Variable, which may lose
precision.  False means that it will only be cast to a more
general, or precise, type. None (default) is almost like
False, but allows downcasting of Python float scalars to
floatX.

	profile (None, True, or ProfileStats instance) – accumulate profiling information into a given
ProfileStats instance. If argument is True then a new
ProfileStats instance will be used.  This profiling object
will be available via self.profile.

	on_unused_input – What to do if a variable in the ‘inputs’
list is not used in the graph. Possible values are ‘raise’,
‘warn’, and ‘ignore’.






	Return type:	Function instance




	Returns:	a callable object that will compute the outputs (given the inputs)
and update the implicit function arguments according to the updates.







Inputs can be given as variables or Param instances.
Param instances also have a variable, but they attach some extra
information about how call-time arguments corresponding to that variable
should be used.  Similarly, Out instances can attach information
about how output variables should be returned.

The default is typically ‘FAST_RUN’ but this can be changed in
theano.config.  The mode
argument controls the sort of optimizations that will be applied to the
graph, and the way the optimized graph will be evaluated.

After each function evaluation, the updates mechanism can replace the
value of any SharedVariable [implicit] inputs with new values computed
from the expressions in the updates list.  An exception will be raised
if you give two update expressions for the same SharedVariable input (that
doesn’t make sense).

If a SharedVariable is not given an update expression, but has a
default_update member containing an expression, this expression
will be used as the update expression for this variable.  Passing
no_default_updates=True to function disables this behavior
entirely, passing no_default_updates=[sharedvar1, sharedvar2]
disables it for the mentioned variables.

Regarding givens: Be careful to make sure that these substitutions are
independent, because behaviour when Var1 of one pair appears in the graph leading
to Var2 in another expression is undefined (e.g. with {a: x, b: a + 1}).
Replacements specified with
givens are different from optimizations in that Var2 is not expected to be
equivalent to Var1.






	
theano.compile.function.function_dump(filename, inputs, outputs=None, mode=None, updates=None, givens=None, no_default_updates=False, accept_inplace=False, name=None, rebuild_strict=True, allow_input_downcast=None, profile=None, on_unused_input=None)

	This is helpful to make a reproducable case for problem during
Theano compilation.
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Note

*TODO* Freshen up this old documentation




io - defines theano.function [TODO]


Inputs

The inputs argument to theano.function is a list, containing the Variable instances for which values will be specified at the time of the function call.  But inputs can be more than just Variables.
In instances let us attach properties to Variables to tell function more about how to use them.


	
class io.In(object)

	
	
__init__(variable, name=None, value=None, update=None, mutable=False, strict=False, autoname=True, implicit=None)

	variable: a Variable instance. This will be assigned a value
before running the function, not computed from its owner.

name: Any type. (If autoname_input==True, defaults to
variable.name). If name is a valid Python identifier, this input
can be set by kwarg, and its value can be accessed by
self.<name>. The default value is None.


	value: literal or Container. The initial/default value for this

	input. If update is`` None``, this input acts just like
an argument with a default value in Python. If update is not None,
changes to this
value will “stick around”, whether due to an update or a user’s
explicit action.



update: Variable instance. This expression Variable will
replace value after each function call. The default value is
None, indicating that no update is to be done.

mutable: Bool (requires value). If True, permit the
compiled function to modify the Python object being used as the
default value. The default value is False.

strict: Bool (default: False ). True means that the value
you pass for this input must have exactly the right type. Otherwise, it
may be cast automatically to the proper type.

autoname: Bool. If set to True, if name is None and
the Variable has a name, it will be taken as the input’s
name. If autoname is set to False, the name is the exact
value passed as the name parameter (possibly None).


	implicit: Bool or None (default: None)

	True: This input is implicit in the sense that the user is not allowed
to provide a value for it. Requires value to be set.

False: The user can provide a value for this input. Be careful
when value is a container, because providing an input value will
overwrite the content of this container.

None: Automatically choose between True or False depending on the
situation. It will be set to False in all cases except if
value is a container (so that there is less risk of accidentally
overwriting its content without being aware of it).














Value: initial and default values

A non-None value argument makes an In() instance an optional parameter
of the compiled function.  For example, in the following code we are
defining an arity-2 function inc.

>>> u, x, s = T.scalars('u', 'x', 's')
>>> inc = function([u, In(x, value=3), In(s, update=(s+x*u), value=10.0)], [])





Since we provided a value for s and x, we can call it with just a value for u like this:

>>> inc(5)         # update s with 10+3*5
[]
>>> print inc[s]
25.0





The effect of this call is to increment the storage associated to s in inc by 15.

If we pass two arguments to inc, then we override the value associated to
x, but only for this one function call.

>>> inc(3, 4)      # update s with 25 + 3*4
[]
>>> print inc[s]
37.0
>>> print inc[x]   # the override value of 4 was only temporary
3.0





If we pass three arguments to inc, then we override the value associated
with x and u and s.
Since s‘s value is updated on every call, the old value of s will be ignored and then replaced.

>>> inc(3, 4, 7)      # update s with 7 + 3*4
[]
>>> print inc[s]
19.0





We can also assign to inc[s] directly:

>>> inc[s] = 10
>>> inc[s]
array(10.0)








Input Argument Restrictions

The following restrictions apply to the inputs to theano.function:


	Every input list element must be a valid In instance, or must be
upgradable to a valid In instance. See the shortcut rules below.

	The same restrictions apply as in Python function definitions:
default arguments and keyword arguments must come at the end of
the list. Un-named mandatory arguments must come at the beginning of
the list.

	Names have to be unique within an input list.  If multiple inputs
have the same name, then the function will raise an exception. [*Which
exception?]

	Two In instances may not name the same Variable. I.e. you cannot
give the same parameter multiple times.



If no name is specified explicitly for an In instance, then its name
will be taken from the Variable’s name. Note that this feature can cause
harmless-looking input lists to not satisfy the two conditions above.
In such cases, Inputs should be named explicitly to avoid problems
such as duplicate names, and named arguments preceding unnamed ones.
This automatic naming feature can be disabled by instantiating an In
instance explicitly with the autoname flag set to False.




Access to function values and containers

For each input, theano.function will create a Container if
value was not already a Container (or if implicit was False). At the time of a function call,
each of these containers must be filled with a value. Each input (but
especially ones with a default value or an update expression) may have a
value between calls. The function interface defines a way to get at
both the current value associated with an input, as well as the container
which will contain all future values:



	The value property accesses the current values. It is both readable
and writable, but assignments (writes) may be implemented by an internal
copy and/or casts.

	The container property accesses the corresponding container.
This property accesses is a read-only dictionary-like interface. It is
useful for fetching the container associated with a particular input to
share containers between functions, or to have a sort of pointer to an
always up-to-date value.






Both value and container properties provide dictionary-like access based on three types of keys:


	integer keys: you can look up a value/container by its position in the input list;

	name keys: you can look up a value/container by its name;

	Variable keys: you can look up a value/container by the Variable it corresponds to.



In addition to these access mechanisms, there is an even more convenient
method to access values by indexing a Function directly by typing
fn[<name>], as in the examples above.

To show some examples of these access methods...

a, b, c = T.scalars('xys') # set the internal names of graph nodes
# Note that the name of c is 's', not 'c'!
fn = function([a, b, ((c, c+a+b), 10.0)], [])

#the value associated with c is accessible in 3 ways
assert fn['s'] is fn.value[c]
assert fn['s'] is fn.container[c].value

assert fn['s'] == 10.0
fn(1, 2)
assert fn['s'] == 13.0
fn.s = 99.0
fn(1, 0)
assert fn['s'] == 100.0
fn.value[c] = 99.0
fn(1,0)
assert fn['s'] == 100.0
assert fn['s'] == fn.value[c]
assert fn['s'] == fn.container[c].value








Input Shortcuts

Every element of the inputs list will be upgraded to an In instance if necessary.


	a Variable instance r will be upgraded like In(r)

	a tuple (name, r) will be In(r, name=name)

	a tuple (r, val) will be In(r, value=value, autoname=True)

	a tuple ((r,up), val) will be In(r, value=value, update=up, autoname=True)

	a tuple (name, r, val) will be In(r, name=name, value=value)

	a tuple (name, (r,up), val) will be In(r, name=name, value=val, update=up, autoname=True)



Example:

import theano
from theano import tensor as T
from theano.compile.io import In
x = T.scalar()
y = T.scalar('y')
z = T.scalar('z')
w = T.scalar('w')

fn = theano.function(inputs = [x, y, In(z, value=42), ((w, w+x), 0)],
                     outputs = x + y + z)
# the first two arguments are required and the last two are
# optional and initialized to 42 and 0, respectively.
# The last argument, w, is updated with w + x each time the
# function is called.

fn(1)               # illegal because there are two required arguments
fn(1, 2)            # legal, z is 42, w goes 0 -> 1 (because w <- w + x), returns array(45.0)
fn(1, y = 2)        # legal, z is 42, w goes 1 -> 2, returns array(45.0)
fn(x = 1, y = 2)    # illegal because x was not named
fn(1, 2, 3)         # legal, z is 3, w goes 2 -> 3, returns array(6.0)
fn(1, z = 3, y = 2) # legal, z is 3, w goes 3 -> 4, returns array(6.0)
fn(1, 2, w = 400)   # legal, z is 42 again, w goes 400 -> 401, returns array(45.0)
fn(1, 2)            # legal, z is 42, w goes 401 -> 402, returns array(45.0)





In the example above, z has value 42 when no value is explicitly given.
This default value is potentially used at every function invocation, because
z has no update or storage associated with it.






Outputs

The outputs argument to function can be one of


	None, or

	a Variable or Out instance, or

	a list of Variables or Out instances.



An Out instance is a structure that lets us attach options to individual output Variable instances,
similarly to how In lets us attach options to individual input Variable instances.

Out(variable, borrow=False) returns an Out instance:



	borrow

If True, a reference to function’s internal storage
is OK.  A value returned for this output might be clobbered by running
the function again, but the function might be faster.

Default: False








If a single Variable or Out instance is given as argument, then the compiled function will return a single value.

If a list of Variable or Out instances is given as argument, then the compiled function will return a list of their values.

x, y, s = T.matrices('xys')

# print a list of 2 ndarrays
fn1 = theano.function([x], [x+x, Out((x+x).T, borrow=True)])
print fn1(numpy.asarray([[1,0],[0,1]]))


# print a list of 1 ndarray
fn2 = theano.function([x], [x+x])
print fn2(numpy.asarray([[1,0],[0,1]]))

# print an ndarray
fn3 = theano.function([x], outputs=x+x)
print fn3(numpy.asarray([[1,0],[0,1]]))
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ops –  Some Common Ops and extra Ops stuff

This file contains auxiliary Ops, used during the compilation phase
and Ops building class (FromFunctionOp) and decorator
(as_op()) that help make new Ops more rapidly.


	
class theano.compile.ops.FromFunctionOp(fn, itypes, otypes, infer_shape)

	Build a basic Theano Op around a function.

Since the resulting Op is very basic and is missing most of the
optional functionalities, some optimizations may not apply.  If you
want to help, you can supply an infer_shape function that computes
the shapes of the output given the shapes of the inputs.

Also the gradient is undefined in the resulting op and Theano will
raise an error if you attempt to get the gradient of a graph
containing this op.






	
class theano.compile.ops.OutputGuard(use_c_code='/usr/bin/g++')

	This op is used only internally by Theano.

Only the AddDestroyHandler optimizer tries to insert them in the graph.

This Op is declared as destructive while it is not destroying
anything. It returns a view. This is used to prevent destruction of
the output variables of a Theano function.

There is a mechanism in Theano that should prevent this, but the use
of OutputGuard adds a safeguard: it may be possible for some optimization
run before the add_destroy_handler phase to bypass this mechanism, by
making in-place optimizations.

TODO: find a current full explanation.






	
class theano.compile.ops.Rebroadcast(*axis)

	Change the input’s broadcastable fields in some predetermined way.

Rebroadcast((0, True), (1, False))(x) would make x
broadcastable in axis 0 and not broadcastable in axis 1


See also

unbroadcast
addbroadcast
patternbroadcast



..note: works inplace and works for CudaNdarrayType






	
class theano.compile.ops.Shape(use_c_code='/usr/bin/g++')

	L{Op} to return the shape of a matrix.

@note: Non-differentiable.






	
class theano.compile.ops.Shape_i(i)

	L{Op} to return the shape of a matrix.

@note: Non-differentiable.






	
class theano.compile.ops.SpecifyShape(use_c_code='/usr/bin/g++')

	L{Op} that puts into the graph the user-provided shape.

In the case where this op stays in the final graph, we assert the shape.
For this the output of this op must be used in the graph. This is not
the case most of the time if we only take the shape of the output.
Maybe there are other optimizations that will mess with this.

@note:     Maybe in the future we will never do the assert!
@note:     We currently don’t support specifying partial shape information.


	@todo:     test this op with sparse and cuda ndarray.

	Do C code for them too.








	
class theano.compile.ops.ViewOp(use_c_code='/usr/bin/g++')

	Returns an inplace view of the input. Used internally by Theano.






	
theano.compile.ops.as_op(itypes, otypes, infer_shape=None)

	Decorator that converts a function into a basic Theano op that
will call the supplied function as its implementation.

It takes an optional infer_shape parameter that should be a
callable with this signature:



	def infer_shape(node, input_shapes):

	...
return output_shapes






Here input_shapes and output_shapes are lists of tuples that
represent the shape of the corresponding inputs/outputs.

This should not be used when performance is a concern since the
very basic nature of the resulting Op may interfere with certain
graph optimizations.

Example usage:



	@as_op(itypes=[theano.tensor.fmatrix, theano.tensor.fmatrix],

	otypes=[theano.tensor.fmatrix])

	def numpy_dot(a, b):

	return numpy.dot(a, b)











	
theano.compile.ops.register_deep_copy_op_c_code(typ, code, version=())

	Tell DeepCopyOp how to generate C code for a Theano Type





	Parameters:	
	typ – A Theano type. It must be the Theano class itself and not an
instance of the class.

	code – C code that deep copies the Theano type ‘typ’.
Use %(iname)s and %(oname)s for the input and output C
variable names respectively.

	version – A number indicating the version of the code, for cache.














	
theano.compile.ops.register_rebroadcast_c_code(typ, code, version=())

	Tell Rebroadcast how to generate C code for a Theano Type





	Parameters:	
	typ – A Theano type. It must be the Theano class itself and not an
instance of the class.

	code – C code that checks if the dimension %(axis)s is of
shape 1 for the Theano type ‘typ’.  Use %(iname)s and
%(oname)s for the input and output C variable names
respectively, and %(axis)s for the axis that we need to
check. This code is put in a loop for all axes.

	version – A number indicating the version of the code, for cache.














	
theano.compile.ops.register_shape_c_code(type, code, version=())

	Tell Shape Op how to generate C code for a Theano Type





	Parameters:	
	typ – A Theano type. It must be the Theano class itself and not an
instance of the class.

	code – C code that return a vector representing the shape
for the Theano type ‘typ’.
Use %(iname)s and %(oname)s for the input and output C
variable names respectively.

	version – A number indicating the version of the code, for cache.














	
theano.compile.ops.register_shape_i_c_code(typ, code, check_input, version=())

	Tell Shape_i how to generate C code for a Theano Type





	Parameters:	
	typ – A Theano type. It must be the Theano class itself and not an
instance of the class.

	code – C code that gets the shape of dimensions %(i)s for the Theano type ‘typ’.
Use %(iname)s and %(oname)s for the input and output C
variable names respectively.

	version – A number indicating the version of the code, for cache.














	
theano.compile.ops.register_specify_shape_c_code(typ, code, version=(), c_support_code_apply=None)

	Tell SpecifyShape how to generate C code for a Theano Type





	Parameters:	
	typ – A Theano type. It must be the Theano class itself and not an
instance of the class.

	code – C code that checks the shape and returns a view for the Theano type ‘typ’.
Use %(iname)s and %(oname)s for the input and output C
variable names respectively.
%(shape)s is the vector of shape of %(iname)s.
Check that its length is good.

	version – A number indicating the version of the code, for cache.

	c_support_code_apply – extra code.














	
theano.compile.ops.register_view_op_c_code(type, code, version=())

	Tell ViewOp how to generate C code for a Theano Type





	Parameters:	
	type – A Theano type. It must be the Theano class itself and not an
instance of the class.

	code – C code that returns a view for the Theano type ‘type’.
Use %(iname)s and %(oname)s for the input and output C
variable names respectively.

	version – A number indicating the version of the code, for cache.














	
theano.compile.ops.shape_i(var, i, fgraph=None)

	Equivalent of var.shape[i], but apply if possible the shape
feature optimization

This is useful in optimization that need to get the shape. This
remove the need of the following shape_feature optimization that
convert it. So this speed up optimization and remove Equilibrium
max iteration problems.





	Parameters:	
	var – the variable we want to take the shape of

	i – The shape dimensions we want

	fgraph – optional. If var.fgraph do not exist, the fgraph that
have the shape_feature to introduce var in to get the optimized shape.
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mode – controlling compilation


Guide

The mode parameter to theano.function() controls how the
inputs-to-outputs graph is transformed into a callable object.

Theano defines the following modes by name:


	'FAST_COMPILE': Apply just a few graph optimizations and only use Python implementations.

	'FAST_RUN': Apply all optimizations, and use C implementations where possible.

	'DebugMode': A mode for debuging. See DebugMode for details.

	'ProfileMode': Deprecated, use the Theano flag config.profile.

	'DEBUG_MODE': Deprecated. Use the string DebugMode.

	'PROFILE_MODE': Deprecated. Use the string ProfileMode.



The default mode is typically FAST_RUN, but it can be controlled via the
configuration variable config.mode, which can be
overridden by passing the keyword argument to theano.function().


Todo

For a finer level of control over which optimizations are applied, and whether
C or Python implementations are used, read.... what exactly?






Reference


	
mode.FAST_COMPILE

	




	
mode.FAST_RUN

	




	
class mode.Mode(object)

	Compilation is controlled by two attributes: the optimizer controls how
an expression graph will be transformed; the linker controls how the
optimized expression graph will be evaluated.


	
optimizer

	An optimizer instance.






	
linker

	A linker instance.






	
including(*tags)

	Return a new Mode instance like this one, but with an
optimizer modified by including the given tags.






	
excluding(*tags)

	Return a new Mode instance like this one, but with an
optimizer modified by excluding the given tags.






	
requiring(*tags)

	Return a new Mode instance like this one, but with an
optimizer modified by requiring the given tags.
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debugmode


Guide

The DebugMode evaluation mode includes a number of self-checks and assertions
that can help to diagnose several kinds of programmer errors that can lead to
incorrect output.

It is much slower to evaluate a function or method with DebugMode than
it would be in 'FAST_RUN' or even 'FAST_COMPILE'.  We recommended you use
DebugMode during development, but not when you launch 1000 processes on
a cluster.

DebugMode can be used as follows:

x = tensor.dvector('x')

f = theano.function([x], 10*x, mode='DebugMode')

f(5)
f(0)
f(7)





It can also be used by setting the configuration variable config.mode.
It can also be used by passing a DebugMode instance as the mode, as in

>>> f = theano.function([x], 10*x, mode=DebugMode(check_c_code=False))





If any problem is detected, DebugMode will raise an exception according to
what went wrong, either at call time (f(5)) or compile time (
f = theano.function(x, 10*x, mode='DebugMode')). These exceptions
should not be ignored; talk to your local Theano guru or email the
users list if you cannot make the exception go away.

Some kinds of errors can only be detected for certain input value combinations.
In the example above, there is no way to guarantee that a future call to say,
f(-1) won’t cause a problem.  DebugMode is not a silver bullet.

If you instantiate DebugMode using the constructor compile.DebugMode
rather than the keyword DebugMode you can configure its behaviour via
constructor arguments.




Reference


	
class debugmode.DebugMode(Mode)

	Evaluation Mode that detects internal theano errors.

This mode catches several kinds of internal error:


	inconsistent outputs when calling the same Op twice with the same
inputs, for instance if c_code and perform implementations, are
inconsistent, or in case of incorrect handling of output memory
(see BadThunkOutput)

	a variable replacing another when their runtime values don’t match.  This is a symptom of
an incorrect optimization step, or faulty Op implementation (raises BadOptimization)

	stochastic optimization ordering (raises StochasticOrder)

	incomplete destroy_map specification (raises BadDestroyMap)

	an op that returns an illegal value not matching the output Variable Type (raises
InvalidValueError)



Each of these exceptions inherits from the more generic DebugModeError.

If there are no internal errors, this mode behaves like FAST_RUN or FAST_COMPILE, but takes
a little longer and uses more memory.

If there are internal errors, this mode will raise an DebugModeError exception.


	
stability_patience = config.DebugMode.patience

	When checking for the stability of optimization, recompile the graph this many times.
Default 10.






	
check_c_code = config.DebugMode.check_c

	Should we evaluate (and check) the c_code implementations?

True -> yes, False -> no.

Default yes.






	
check_py_code = config.DebugMode.check_py

	



Should we evaluate (and check) the perform implementations?


True -> yes, False -> no.

Default yes.





	
check_isfinite = config.DebugMode.check_finite

	Should we check for (and complain about) NaN/Inf ndarray elements?

True -> yes, False -> no.

Default yes.






	
require_matching_strides = config.DebugMode.check_strides

	Check for (and complain about) Ops whose python and C
outputs are ndarrays with different strides. (This can catch bugs, but
is generally overly strict.)

0 -> no check, 1 -> warn, 2 -> err.

Default warn.






	
__init__(self, optimizer='fast_run', stability_patience=None, check_c_code=None, check_py_code=None, check_isfinite=None, require_matching_strides=None, linker=None)

	Initialize member variables.

If any of these arguments (except optimizer) is not None, it overrides the class default.
The linker arguments is not used. It is set their to allow Mode.requiring() and some other fct to work with DebugMode too.









The keyword version of DebugMode (which you get by using mode='DebugMode)
is quite strict, and can raise several different Exception types.
There following are DebugMode exceptions you might encounter:


	
class debugmode.DebugModeError(Exception)

	This is a generic error.  All the other exceptions inherit from this one.
This error is typically not raised directly.
However, you can use except DebugModeError: ... to catch any of the more
specific types of Exception.






	
class debugmode.BadThunkOutput(DebugModeError)

	This exception means that different calls to the same Op with the same
inputs did not compute the same thing like they were supposed to.
For instance, it can happen if the python (perform) and c (c_code)
implementations of the Op are inconsistent (the problem might be a bug in
either perform or c_code (or both)).  It can also happen if
perform or c_code does not handle correctly output memory that
has been preallocated (for instance, if it did not clear the memory before
accumulating into it, or if it assumed the memory layout was C-contiguous
even if it is not).






	
class debugmode.BadOptimization(DebugModeError)

	This exception indicates that an Optimization replaced one variable (say V1)
with another one (say V2)  but at runtime, the values for V1 and V2 were
different.  This is something that optimizations are not supposed to do.

It can be tricky to identify the one-true-cause of an optimization error, but
this exception provides a lot of guidance.  Most of the time, the
exception object will indicate which optimization was at fault.
The exception object also contains information such as a snapshot of the
before/after graph where the optimization introduced the error.






	
class debugmode.BadDestroyMap(DebugModeError)

	This happens when an Op’s perform() or c_code() modifies an input that it wasn’t
supposed to.  If either the perform or c_code implementation of an Op
might modify any input, it has to advertise that fact via the destroy_map
attribute.

For detailed documentation on the destroy_map attribute, see Inplace operations.






	
class debugmode.BadViewMap(DebugModeError)

	This happens when an Op’s perform() or c_code() creates an alias or alias-like
dependency between an input and an output... and it didn’t warn the
optimization system via the view_map attribute.

For detailed documentation on the view_map attribute, see Views.






	
class debugmode.StochasticOrder(DebugModeError)

	This happens when an optimization does not perform the same graph operations
in the same order when run several times in a row.  This can happen if any
steps are ordered by id(object) somehow, such as via the default object
hash function.  A Stochastic optimization invalidates the pattern of work
whereby we debug in DebugMode and then run the full-size jobs in FAST_RUN.






	
class debugmode.InvalidValueError(DebugModeError)

	This happens when some Op’s perform or c_code implementation computes
an output that is invalid with respect to the type of the corresponding output
variable.  Like if it returned a complex-valued ndarray for a dscalar
Type.

This can also be triggered when floating-point values such as NaN and Inf are
introduced into the computations.  It indicates which Op created the first
NaN.  These floating-point values can be allowed by passing the
check_isfinite=False argument to DebugMode.
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profilemode – profiling Theano functions


Guide


Note

ProfileMode is deprecated. Use config.profile instead.



To profile a Theano graph, a special mode called ProfileMode, must be passed as
an argument when compiling your graph. Using ProfileMode is a three-step
process.


Creating a ProfileMode Instance

First create a ProfileMode instance.

>>> from theano import ProfileMode
>>> profmode = theano.ProfileMode(optimizer='fast_run', linker=theano.gof.OpWiseCLinker())





The ProfileMode constructor takes as input an optimizer and a
linker. Which optimizer and linker to use will depend on the
application. For example, a user wanting to profile the Python
implementation only, should use the gof.PerformLinker (or “py” for
short). On the other hand, a user wanting to profile his graph using C
implementations wherever possible should use the gof.OpWiseCLinker
(or “c|py”).

In the same manner, modifying which optimizer is passed to ProfileMode
will decide which optimizations are applied to the graph, prior to
profiling. Changing the optimizer should be especially useful when
developing new graph optimizations, in order to evaluate their impact
on performance. Also keep in mind that optimizations might change the
computation graph a lot, meaning that you might not recognize some of
the operations that are profiled (you did not use them explicitly but
an optimizer decided to use it to improve performance or numerical
stability). If you cannot easily relate the output of ProfileMode with
the computations you defined, you might want to try setting optimizer
to None (but keep in mind the computations will be slower than if they
were optimized).

Note that most users will want to use ProfileMode to optimize their
graph and find where most of the computation time is being spent. In
this context, ‘fast_run’ optimizer and gof.OpWiseCLinker are the
most appropriate choices.


Compiling your Graph with ProfileMode

Once the ProfileMode instance is created, simply compile your graph as you
would normally, by specifying the mode parameter.

>>> # with functions
>>> f = theano.function([input1,input2],[output1], mode=profmode)








Retrieving Timing Information

Once your graph is compiled, simply run the program or operation you wish to
profile, then call profmode.print_summary(). This will provide you with
the desired timing information, indicating where your graph is spending most
of its time.

This is best shown through an example.
Lets use the example of logistic
regression.  (Code for this example is in the file
benchmark/regression/regression.py.)

Compiling the module with ProfileMode and calling profmode.print_summary()
generates the following output:

"""
ProfileMode.print_summary()
---------------------------

local_time 0.0749197006226 (Time spent running thunks)
Apply-wise summary: <fraction of local_time spent at this position> (<Apply position>, <Apply Op name>)
        0.069   15      _dot22
        0.064   1       _dot22
        0.053   0       InplaceDimShuffle{x,0}
        0.049   2       InplaceDimShuffle{1,0}
        0.049   10      mul
        0.049   6       Elemwise{ScalarSigmoid{output_types_preference=<theano.scalar.basic.transfer_type object at 0x171e650>}}[(0, 0)]
        0.049   3       InplaceDimShuffle{x}
        0.049   4       InplaceDimShuffle{x,x}
        0.048   14      Sum{0}
        0.047   7       sub
        0.046   17      mul
        0.045   9       sqr
        0.045   8       Elemwise{sub}
        0.045   16      Sum
        0.044   18      mul
   ... (remaining 6 Apply instances account for 0.25 of the runtime)
Op-wise summary: <fraction of local_time spent on this kind of Op> <Op name>
        0.139   * mul
        0.134   * _dot22
        0.092   * sub
        0.085   * Elemwise{Sub{output_types_preference=<theano.scalar.basic.transfer_type object at 0x1779f10>}}[(0, 0)]
        0.053   * InplaceDimShuffle{x,0}
        0.049   * InplaceDimShuffle{1,0}
        0.049   * Elemwise{ScalarSigmoid{output_types_preference=<theano.scalar.basic.transfer_type object at 0x171e650>}}[(0, 0)]
        0.049   * InplaceDimShuffle{x}
        0.049   * InplaceDimShuffle{x,x}
        0.048   * Sum{0}
        0.045   * sqr
        0.045   * Sum
        0.043   * Sum{1}
        0.042   * Elemwise{Mul{output_types_preference=<theano.scalar.basic.transfer_type object at 0x17a0f50>}}[(0, 1)]
        0.041   * Elemwise{Add{output_types_preference=<theano.scalar.basic.transfer_type object at 0x1736a50>}}[(0, 0)]
        0.039   * Elemwise{Second{output_types_preference=<theano.scalar.basic.transfer_type object at 0x1736d90>}}[(0, 1)]
   ... (remaining 0 Ops account for 0.00 of the runtime)
(*) Op is running a c implementation

"""






Note

*TODO*

The following text was recovered from a recent version of the source
file... hopefully things haven’t gotten too out-of-sync!

The first show an Apply-wise summary, the second show an Op-wise summary, the third show an type-Op-wise summary.

The Apply-wise summary print the timing information for the worst
offending Apply nodes. This corresponds to individual Op applications
within your graph which take the longest to execute (so if you use dot
twice, you will see two entries there).

The Op-wise summary print the execution time of all Apply nodes
executing the same Op are grouped together and the total execution
time per Op is shown (so if you use dot twice, you will see only one
entry there corresponding to the sum of the time spent in each of
them). If two Op have different hash value, they will be separate.

The type-Op-wise summary group the result by type of op. So event if
two Op have different hash value, they will be merged.

Their is an hack with the Op-wise summary. Go see it if you want to know more.



The summary has two components to it. In the first section called the
Apply-wise summary, timing information is provided for the worst
offending Apply nodes. This corresponds to individual Op applications
within your graph which take the longest to execute (so if you use
dot twice, you will see two entries there). In the second portion,
the Op-wise summary, the execution time of all Apply nodes executing
the same Op are grouped together and the total execution time per Op
is shown (so if you use dot twice, you will see only one entry
there corresponding to the sum of the time spent in each of them).

Note that the ProfileMode also shows which Ops were running a c
implementation.

Developers wishing to optimize the performance of their graph should
focus on the worst offending Ops and Apply nodes – either by optimizing an
implementation, providing a missing C implementation, or by writing a graph
optimization that eliminates the offending Op altogether.
You should strongly consider emailing one of our lists about your issue before
spending too much time on this.








Reference


	
class profilemode.ProfileMode(Mode)

	
	
print_summary(n_apply_to_print=None, n_ops_to_print=None)

	Print three summaries to stdout that show where cpu time is spent during theano function executions (for all functions using this object instance).





	Parameters:	
	n_apply_to_print – the number of apply nodes to print.
The default 15, but can be configured via ProfileMode.n_ops_to_print in THEANO_FLAGS.

	n_ops_to_print – the number of ops to print.
Default 20, or but can be configured via ProfileMode.n_apply_to_print in THEANO_FLAGS.






	Returns:	None












	
print_diff_summary(self, other, n_apply_to_print=None, n_ops_to_print=None):

	
""" As print_summary, but print the difference on two different profile mode.

	
TODO: Also we don't print the Apply-wise summary as it don't work for now.

	
TODO: make comparaison with gpu code.

	



	Parameters:	
	other – the other instance of ProfileMode that we want to be compared to.

	n_apply_to_print – the number of apply nodes to print.
The default 15, but can be configured via ProfileMode.n_ops_to_print in THEANO_FLAGS.

	n_ops_to_print – the number of ops to print.
Default 20, or but can be configured via ProfileMode.n_apply_to_print in THEANO_FLAGS.






	Returns:	None
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sparse – Symbolic Sparse Matrices

In the tutorial section, you can find a sparse tutorial.

The sparse submodule is not loaded when we import Theano. You must
import theano.sparse to enable it.

The sparse module provides the same functionality as the tensor
module. The difference lies under the covers because sparse matrices
do not store data in a contiguous array. Note that there are no GPU
implementations for sparse matrices in Theano. The sparse module has
been used in:


	NLP: Dense linear transformations of sparse vectors.

	Audio: Filterbank in the Fourier domain.




Compressed Sparse Format

This section tries to explain how information is stored for the two
sparse formats of SciPy supported by Theano. There are more formats
that can be used with SciPy and some documentation about them may be
found here [http://deeplearning.net/software/theano/sandbox/sparse.html].

Theano supports two compressed sparse formats csc and csr,
respectively based on columns and rows. They have both the same
attributes: data, indices, indptr and shape.



	The data attribute is a one-dimentionnal ndarray which
contains all the non-zero elements of the sparse matrix.

	The indices and indptr attributes are used to store the
position of the data in the sparse matrix.

	The shape attribute is exactly the same as the shape
attribute of a dense (i.e. generic) matrix. It can be explicitly
specified at the creation of a sparse matrix if it cannot be
infered from the first three attributes.







CSC Matrix

In the Compressed Sparse Column format, indices stands for
indexes inside the column vectors of the matrix and indptr tells
where the column starts in the data and in the indices
attributes. indptr can be thought of as giving the slice which
must be applied to the other attribute in order to get each column of
the matrix. In other words, slice(indptr[i], indptr[i+1])
corresponds to the slice needed to find the i-th column of the matrix
in the data and indices fields.

The following example builds a matrix and returns its columns. It
prints the i-th column, i.e. a list of indices in the column and their
corresponding value in the second list.

>>> data = np.asarray([7, 8, 9])
>>> indices = np.asarray([0, 1, 2])
>>> indptr = np.asarray([0, 2, 3, 3])
>>> m = sp.csc_matrix((data, indices, indptr), shape=(3, 3))
>>> print m.toarray()
[[7 0 0]
 [8 0 0]
 [0 9 0]]
>>> i = 0
>>> print m.indices[m.indptr[i]:m.indptr[i+1]], m.data[m.indptr[i]:m.indptr[i+1]]
[0, 1] [7, 8]
>>> i = 1
>>> print m.indices[m.indptr[i]:m.indptr[i+1]], m.data[m.indptr[i]:m.indptr[i+1]]
[2] [9]
>>> i = 2
>>> print m.indices[m.indptr[i]:m.indptr[i+1]], m.data[m.indptr[i]:m.indptr[i+1]]
[] []








CSR Matrix

In the Compressed Sparse Row format, indices stands for indexes
inside the row vectors of the matrix and indptr tells where the
row starts in the data and in the indices
attributes. indptr can be thought of as giving the slice which
must be applied to the other attribute in order to get each row of the
matrix. In other words, slice(indptr[i], indptr[i+1]) corresponds
to the slice needed to find the i-th row of the matrix in the data
and indices fields.

The following example builds a matrix and returns its rows. It prints
the i-th row, i.e. a list of indices in the row and their
corresponding value in the second list.

>>> data = np.asarray([7, 8, 9])
>>> indices = np.asarray([0, 1, 2])
>>> indptr = np.asarray([0, 2, 3, 3])
>>> m = sp.csr_matrix((data, indices, indptr), shape=(3, 3))
>>> print m.toarray()
[[7 8 0]
 [0 0 9]
 [0 0 0]]
>>> i = 0
>>> print m.indices[m.indptr[i]:m.indptr[i+1]], m.data[m.indptr[i]:m.indptr[i+1]]
[0, 1] [7, 8]
>>> i = 1
>>> print m.indices[m.indptr[i]:m.indptr[i+1]], m.data[m.indptr[i]:m.indptr[i+1]]
[2] [9]
>>> i = 2
>>> print m.indices[m.indptr[i]:m.indptr[i+1]], m.data[m.indptr[i]:m.indptr[i+1]]
[] []










List of Implemented Operations


	
	Moving from and to sparse

	
	dense_from_sparse.
Both grads are implemented. Structured by default.

	csr_from_dense,
csc_from_dense.
The grad implemented is structured.

	Theano SparseVariable objects have a method toarray() that is the same as
dense_from_sparse.









	
	Construction of Sparses and their Properties

	
	CSM and CSC, CSR to construct a matrix.
The grad implemented is regular.

	csm_properties.
to get the properties of a sparse matrix.
The grad implemented is regular.

	csm_indices(x), csm_indptr(x), csm_data(x) and csm_shape(x) or x.shape.

	sp_ones_like.
The grad implemented is regular.

	sp_zeros_like.
The grad implemented is regular.

	square_diagonal.
The grad implemented is regular.

	construct_sparse_from_list.
The grad implemented is regular.









	
	Cast

	
	cast with bcast, wcast, icast, lcast,
fcast, dcast, ccast, and zcast.
The grad implemented is regular.









	
	Transpose

	
	transpose.
The grad implemented is regular.









	
	Basic Arithmetic

	
	neg.
The grad implemented is regular.

	eq.

	neq.

	gt.

	ge.

	lt.

	le.

	add.
The grad implemented is regular.

	sub.
The grad implemented is regular.

	mul.
The grad implemented is regular.

	col_scale to multiply by a vector along the columns.
The grad implemented is structured.

	row_slace to multiply by a vector along the rows.
The grad implemented is structured.









	
	Monoid (Element-wise operation with only one sparse input).

	They all have a structured grad.


	structured_sigmoid

	structured_exp

	structured_log

	structured_pow

	structured_minimum

	structured_maximum

	structured_add

	sin

	arcsin

	tan

	arctan

	sinh

	arcsinh

	tanh

	arctanh

	rad2deg

	deg2rad

	rint

	ceil

	floor

	trunc

	sgn

	log1p

	expm1

	sqr

	sqrt









	
	Dot Product

	
	dot.



	One of the inputs must be sparse, the other sparse or dense.

	The grad implemented is regular.

	No C code for perform and no C code for grad.

	Returns a dense for perform and a dense for grad.








	structured_dot.



	The first input is sparse, the second can be sparse or dense.

	The grad implemented is structured.

	C code for perform and grad.

	It returns a sparse output if both inputs are sparse and
dense one if one of the inputs is dense.

	Returns a sparse grad for sparse inputs and dense grad for
dense inputs.








	true_dot.



	The first input is sparse, the second can be sparse or dense.

	The grad implemented is regular.

	No C code for perform and no C code for grad.

	Returns a Sparse.

	The gradient returns a Sparse for sparse inputs and by
default a dense for dense inputs. The parameter
grad_preserves_dense can be set to False to return a
sparse grad for dense inputs.








	sampling_dot.



	Both inputs must be dense.

	The grad implemented is structured for p.

	Sample of the dot and sample of the gradient.

	C code for perform but not for grad.

	Returns sparse for perform and grad.








	usmm.



	
	You shouldn’t insert this op yourself!

	
	There is an optimization that transform a
dot to Usmm when possible.









	This op is the equivalent of gemm for sparse dot.



	There is no grad implemented for this op.



	One of the inputs must be sparse, the other sparse or dense.



	Returns a dense from perform.


















	
	Slice Operations

	
	sparse_variable[N, N], returns a tensor scalar.
There is no grad implemented for this operation.

	sparse_variable[M:N, O:P], returns a sparse matrix
There is no grad implemented for this operation.

	Sparse variables don’t support [M, N:O] and [M:N, O] as we don’t
support sparse vectors and returning a sparse matrix would break
the numpy interface.  Use [M:M+1, N:O] and [M:N, O:O+1] instead.

	diag.
The grad implemented is regular.









	
	Concatenation

	
	hstack.
The grad implemented is regular.

	vstack.
The grad implemented is regular.









	
	Probability

	There is no grad implemented for these operations.


	Poisson and poisson

	Binomial and csc_fbinomial, csc_dbinomial
csr_fbinomial, csr_dbinomial

	Multinomial and multinomial









	
	Internal Representation

	They all have a regular grad implemented.


	ensure_sorted_indices.

	remove0.

	clean to resort indices and remove zeros









	
	To help testing

	
	theano.sparse.tests.test_basic.sparse_random_inputs()
















sparse –  Sparse Op

Classes for handling sparse matrices.

To read about different sparse formats, see
http://www-users.cs.umn.edu/~saad/software/SPARSKIT/paper.ps


	
theano.sparse.basic.CSC = <theano.sparse.basic.CSM object at 0x7f2d87b8b250>

	Construct a CSC matrix from the internal
representation.





	Parameters:	
	data – One dimensional tensor representing
the data of the sparse matrix to construct.

	indices – One dimensional tensor of integers
representing the indices of the sparse
matrix to construct.

	indptr – One dimensional tensor of integers
representing the indice pointer for
the sparse matrix to construct.

	shape – One dimensional tensor of integers
representing the shape of the sparse
matrix to construct.






	Returns:	A sparse matrix having the properties
specified by the inputs.




	Note:	The grad method returns a dense vector, so it provides
a regular grad.












	
theano.sparse.basic.CSR = <theano.sparse.basic.CSM object at 0x7f2d87b8b0d0>

	Construct a CSR matrix from the internal
representation.





	Parameters:	
	data – One dimensional tensor representing
the data of the sparse matrix to construct.

	indices – One dimensional tensor of integers
representing the indices of the sparse
matrix to construct.

	indptr – One dimensional tensor of integers
representing the indice pointer for
the sparse matrix to construct.

	shape – One dimensional tensor of integers
representing the shape of the sparse
matrix to construct.






	Returns:	A sparse matrix having the properties
specified by the inputs.




	Note:	The grad method returns a dense vector, so it provides
a regular grad.












	
theano.sparse.basic.add(x, y)

	Add two matrices, at least one of which is sparse.

This method will provide the right op according
to the inputs.





	Parameters:	
	x – A matrix variable.

	y – A matrix variable.






	Returns:	x + y




	Note:	At least one of x and y must be a sparse matrix.




	Note:	The grad will be structured only when one of the
variable will be a dense matrix.












	
theano.sparse.basic.add_s_s_data = <theano.sparse.basic.AddSSData object at 0x7f2d87b8bc10>

	Add two sparse matrices assuming they have the same sparsity
pattern.





	Parameters:	
	x – Sparse matrix.

	y – Sparse matrix.






	Returns:	The sum of the two sparse matrices element wise.




	Note:	x and y are assumed to have the same
sparsity pattern.




	Note:	The grad implemented is structured.












	
theano.sparse.basic.as_sparse(x, name=None)

	Wrapper around SparseVariable constructor to construct
a Variable with a sparse matrix with the same dtype and
format.





	Parameters:	x – A sparse matrix.


	Returns:	SparseVariable version of x.










	
theano.sparse.basic.as_sparse_or_tensor_variable(x, name=None)

	Same as as_sparse_variable but If we can’t make a
sparse variable, we try to make a tensor variable.
format.





	Parameters:	x – A sparse matrix.


	Returns:	SparseVariable or TensorVariable version of x.










	
theano.sparse.basic.as_sparse_variable(x, name=None)

	Wrapper around SparseVariable constructor to construct
a Variable with a sparse matrix with the same dtype and
format.





	Parameters:	x – A sparse matrix.


	Returns:	SparseVariable version of x.










	
theano.sparse.basic.cast(variable, dtype)

	Cast sparse variable to the desired dtype.





	Parameters:	
	variable – Sparse matrix.

	dtype – the dtype wanted.






	Returns:	Same as x but having dtype as dtype.




	Note:	The grad implemented is regular, i.e. not
structured.












	
theano.sparse.basic.clean(x)

	Remove explicit zeros from a sparse matrix, and
re-sort indices.

CSR column indices are not necessarily sorted. Likewise
for CSC row indices. Use clean when sorted
indices are required (e.g. when passing data to other
libraries) and to ensure there are no zeros in the data.





	Parameters:	x – A sparse matrix.


	Returns:	The same as x with indices sorted and zeros
removed.


	Note:	The grad implemented is regular, i.e. not structured.










	
theano.sparse.basic.col_scale(x, s)

	Scale each columns of a sparse matrix by the corresponding
element of a dense vector





	Parameters:	
	x – A sparse matrix.

	s – A dense vector with length equal to the number
of columns of x.






	Returns:	A sparse matrix in the same format as x which
each column had been multiply by the corresponding
element of s.




	Note:	The grad implemented is structured.












	
theano.sparse.basic.construct_sparse_from_list = <theano.sparse.basic.ConstructSparseFromList object at 0x7f2d8784fd50>

	Constructs a sparse matrix out of a list of 2-D matrix rows





	Note:	The grad implemented is regular, i.e. not structured.










	
theano.sparse.basic.csc_from_dense = <theano.sparse.basic.SparseFromDense object at 0x7f2d87b8b3d0>

	Convert a dense matrix to a sparse csc matrix.
:param x: A dense matrix.
:return: The same as x in a sparse csc matrix format.






	
theano.sparse.basic.csm_data(csm)

	return the data field of the sparse variable.






	
theano.sparse.basic.csm_indices(csm)

	return the indices field of the sparse variable.






	
theano.sparse.basic.csm_indptr(csm)

	return the indptr field of the sparse variable.






	
theano.sparse.basic.csm_properties = <theano.sparse.basic.CSMProperties object at 0x7f2d87b8b910>

	Extract all of .data, .indices, .indptr and .shape field.

For specific field, csm_data, csm_indices, csm_indptr
and csm_shape are provided.





	Parameters:	csm – Sparse matrix in CSR or CSC format.


	Returns:	(data, indices, indptr, shape), the properties of csm.


	Note:	The grad implemented is regular, i.e. not structured.
infer_shape method is not available for this op.










	
theano.sparse.basic.csm_shape(csm)

	return the shape field of the sparse variable.






	
theano.sparse.basic.csr_from_dense = <theano.sparse.basic.SparseFromDense object at 0x7f2d87b8bd10>

	Convert a dense matrix to a sparse csr matrix.
:param x: A dense matrix.
:return: The same as x in a sparse csr matrix format.






	
theano.sparse.basic.dense_from_sparse = <theano.sparse.basic.DenseFromSparse object at 0x7f2d87b8bf50>

	Convert a sparse matrix to a dense one.





	Parameters:	x – A sparse matrix.


	Returns:	A dense matrix, the same as x.


	Note:	The grad implementation can be controlled
through the constructor via the structured
parameter. True will provide a structured
grad while False will provide a regular
grad. By default, the grad is structured.










	
theano.sparse.basic.diag = <theano.sparse.basic.Diag object at 0x7f2d87b8ba10>

	Extract the diagonal of a square sparse matrix as a dense vector.






	param x:	A square sparse matrix in csc format.


	return:	A dense vector representing the diagonal elements.









Note

The grad implemented is regular, i.e. not structured, since the
output is a dense vector.








	
theano.sparse.basic.dot(x, y)

	Operation for efficiently calculating the dot product when
one or all operands is sparse. Supported format are CSC and CSR.
The output of the operation is dense.





	Parameters:	
	x – sparse or dense matrix variable.

	y – sparse or dense matrix variable.






	Returns:	The dot product x.`y` in a dense format.




	Note:	The grad implemented is regular, i.e. not structured.




	Note:	At least one of x or y must be a sparse matrix.




	Note:	At least one of x or y must be a sparse matrix.




	Note:	When the operation has the form dot(csr_matrix, dense)
the gradient of this operation can be performed inplace
by UsmmCscDense. This leads to significant speed-ups.












	
theano.sparse.basic.ensure_sorted_indices = <theano.sparse.basic.EnsureSortedIndices object at 0x7f2d87b8b8d0>

	Re-sort indices of a sparse matrix.

CSR column indices are not necessarily sorted. Likewise
for CSC row indices. Use ensure_sorted_indices when sorted
indices are required (e.g. when passing data to other
libraries).





	Parameters:	x – A sparse matrix.


	Returns:	The same as x with indices sorted.


	Note:	The grad implemented is regular, i.e. not structured.










	
theano.sparse.basic.eq(x, y)

	



	Parameters:	
	x – A matrix variable.

	y – A matrix variable.






	Returns:	x == y




	Note:	At least one of x and y must be a sparse matrix.












	
theano.sparse.basic.ge(x, y)

	



	Parameters:	
	x – A matrix variable.

	y – A matrix variable.






	Returns:	x >= y




	Note:	At least one of x and y must be a sparse matrix.












	
theano.sparse.basic.get_item_2d = <theano.sparse.basic.GetItem2d object at 0x7f2d87b8b310>

	Implement a subtensor of sparse variable, returning a
sparse matrix.

If you want to take only one element of a sparse matrix see
GetItemScalar that returns a tensor scalar.


Note

Subtensor selection always returns a matrix, so indexing
with [a:b, c:d] is forced.  If one index is a scalar, for
instance, x[a:b, c] or x[a, b:c], an error will be raised. Use
instead x[a:b, c:c+1] or x[a:a+1, b:c].



The above indexing methods are not supported because the return value
would be a sparse matrix rather than a sparse vector, which is a
deviation from numpy indexing rule.  This decision is made largely
to preserve consistency between numpy and theano. This may be revised
when sparse vectors are supported.





	Parameters:	
	x – Sparse matrix.

	index – Tuple of slice object.






	Returns:	The corresponding slice in x.




	Note:	The grad is not implemented for this op.












	
theano.sparse.basic.get_item_2lists = <theano.sparse.basic.GetItem2Lists object at 0x7f2d87b8b650>

	Select elements of sparse matrix, returning them in a vector.





	Parameters:	
	x – Sparse matrix.

	index – List of two lists, first list indicating the row of
each element and second list indicating its column.






	Returns:	The corresponding elements in x.












	
theano.sparse.basic.get_item_list = <theano.sparse.basic.GetItemList object at 0x7f2d87b8ba90>

	Select row of sparse matrix,
returning them as a new sparse matrix.





	Parameters:	
	x – Sparse matrix.

	index – List of rows.






	Returns:	The corresponding rows in x.












	
theano.sparse.basic.get_item_scalar = <theano.sparse.basic.GetItemScalar object at 0x7f2d87b8b9d0>

	Implement a subtensor of a sparse variable that takes
two scalars as index and returns a scalar.

If you want to take a slice of a sparse matrix see
GetItem2d that returns a sparse matrix.





	Parameters:	
	x – Sparse matrix.

	index – Tuple of scalars.






	Returns:	The corresponding item in x.




	Note:	The grad is not implemented for this op.












	
theano.sparse.basic.gt(x, y)

	



	Parameters:	
	x – A matrix variable.

	y – A matrix variable.






	Returns:	x > y




	Note:	At least one of x and y must be a sparse matrix.












	
theano.sparse.basic.hstack(blocks, format=None, dtype=None)

	Stack sparse matrices horizontally (column wise).

This wrap the method hstack from scipy.





	Parameters:	
	blocks – List of sparse array of compatible shape.

	format – String representing the output format. Default
is csc.

	dtype – Output dtype.






	Returns:	The concatenation of the sparse array column wise.




	Note:	The number of line of the sparse matrix must agree.




	Note:	The grad implemented is regular, i.e. not structured.












	
theano.sparse.basic.le(x, y)

	



	Parameters:	
	x – A matrix variable.

	y – A matrix variable.






	Returns:	x <= y




	Note:	At least one of x and y must be a sparse matrix.












	
theano.sparse.basic.lt(x, y)

	



	Parameters:	
	x – A matrix variable.

	y – A matrix variable.






	Returns:	x < y




	Note:	At least one of x and y must be a sparse matrix.












	
theano.sparse.basic.mul(x, y)

	Multiply elementwise two matrices, at least one
of which is sparse.

This method will provide the right op according
to the inputs.





	Parameters:	
	x – A matrix variable.

	y – A matrix variable.






	Returns:	x + y




	Note:	At least one of x and y must be a sparse matrix.




	Note:	The grad is regular, i.e. not structured.












	
theano.sparse.basic.mul_s_v = <theano.sparse.basic.MulSV object at 0x7f2d87534350>

	Multiplication of sparse matrix by a broadcasted dense vector element wise.





	Parameters:	
	x – Sparse matrix to multiply.

	y – Tensor broadcastable vector.






	Return:	The product x * y element wise.




	Note:	The grad implemented is regular, i.e. not structured.












	
theano.sparse.basic.neg = <theano.sparse.basic.Neg object at 0x7f2d87b8bad0>

	Return the negation of the sparse matrix.





	Parameters:	x – Sparse matrix.


	Returns:	-x.


	Note:	The grad is regular, i.e. not structured.










	
theano.sparse.basic.neq(x, y)

	



	Parameters:	
	x – A matrix variable.

	y – A matrix variable.






	Returns:	x != y




	Note:	At least one of x and y must be a sparse matrix.












	
theano.sparse.basic.remove0 = <theano.sparse.basic.Remove0 object at 0x7f2d87534dd0>

	Remove explicit zeros from a sparse matrix.





	Parameters:	x – Sparse matrix.


	Returns:	Exactly x but with a data attribute
exempt of zeros.


	Note:	The grad implemented is regular, i.e. not structured.










	
theano.sparse.basic.row_scale(x, s)

	Scale each row of a sparse matrix by the corresponding element of
a dense vector





	Parameters:	
	x – A sparse matrix.

	s – A dense vector with length equal to the number
of rows of x.






	Returns:	A sparse matrix in the same format as x which
each row had been multiply by the corresponding
element of s.




	Note:	The grad implemented is structured.












	
theano.sparse.basic.sampling_dot = <theano.sparse.basic.SamplingDot object at 0x7f2d8784ff50>

	Operand for calculating the dot product dot(x, y.T) = z when you
only want to calculate a subset of z.

It is equivalent to p o (x . y.T) where o is the element-wise
product, x and y operands of the dot product and p is a matrix that
contains 1 when the corresponding element of z should be calculated
and 0 when it shouldn’t. Note that SamplingDot has a different interface
than dot because SamplingDot requires x to be a m`x`k matrix while
y is a n`x`k matrix instead of the usual k`x`n matrix.


Note

It will work if the pattern is not binary value, but if the
pattern doesn’t have a high sparsity proportion it will be slower
then a more optimized dot followed by a normal elemwise
multiplication.







	Parameters:	
	x – Tensor matrix.

	y – Tensor matrix.

	p – Sparse matrix in csr format.






	Returns:	A dense matrix containing the dot product of x by y.T only
where p is 1.




	Note:	The grad implemented is regular, i.e. not structured.












	
theano.sparse.basic.sp_ones_like(x)

	Construct a sparse matrix of ones
with the same sparsity pattern.





	Parameters:	x – Sparse matrix to take
the sparsity pattern.


	Returns:	The same as x with data
changed for ones.










	
theano.sparse.basic.sp_sum(x, axis=None, sparse_grad=False)

	Calculate the sum of a sparse matrix along the specified
axis.

It operates a reduction along the specified axis. When
axis is None, it is applied along all axes.





	Parameters:	
	x – Sparse matrix.

	axis – Axis along which the sum is applied. Integer or None.

	sparse_grad – True to have a structured grad. Boolean.






	Returns:	The sum of x in a dense format.




	Note:	The grad implementation is controlled with the sparse_grad
parameter. True will provide a structured grad and False
will provide a regular grad. For both choices, the grad
returns a sparse matrix having the same format as x.




	Note:	This op does not return a sparse matrix, but a dense tensor
matrix.












	
theano.sparse.basic.sp_zeros_like(x)

	Construct a sparse matrix of zeros.





	Parameters:	x – Sparse matrix to take
the shape.


	Returns:	The same as x with zero entries
for all element.










	
theano.sparse.basic.sparse_formats = ['csc', 'csr']

	Types of sparse matrices to use for testing






	
theano.sparse.basic.square_diagonal = <theano.sparse.basic.SquareDiagonal object at 0x7f2d87b8b510>

	Return a square sparse (csc) matrix whose diagonal
is given by the dense vector argument.





	Parameters:	x – Dense vector for the diagonal.


	Returns:	A sparse matrix having x as diagonal.


	Note:	The grad implemented is regular, i.e. not structured.










	
theano.sparse.basic.structured_add_s_v = <theano.sparse.basic.StructuredAddSV object at 0x7f2d87b8b490>

	Structured addition of a sparse matrix and a dense vector.
The elements of the vector are only added to the corresponding
non-zero elements of the sparse matrix. Therefore, this operation
outputs another sparse matrix.





	Parameters:	
	x – Sparse matrix.

	y – Tensor type vector.






	Returns:	A sparse matrix containing the addition of the vector to
the data of the sparse matrix.




	Note:	The grad implemented is structured since the op is structured.












	
theano.sparse.basic.structured_dot(x, y)

	Structured Dot is like dot, except that only the
gradient wrt non-zero elements of the sparse matrix
a are calculated and propagated.

The output is presumed to be a dense matrix, and is represented by a
TensorType instance.





	Parameters:	
	a – A sparse matrix.

	b – A sparse or dense matrix.






	Returns:	The dot product of a and b.




	Note:	The grad implemented is structured.












	
theano.sparse.basic.sub(x, y)

	Substact two matrices, at least one of which is sparse.

This method will provide the right op according
to the inputs.





	Parameters:	
	x – A matrix variable.

	y – A matrix variable.






	Returns:	x - y




	Note:	At least one of x and y must be a sparse matrix.




	Note:	The grad will be structured only when one of the variable
will be a dense matrix.












	
theano.sparse.basic.transpose = <theano.sparse.basic.Transpose object at 0x7f2d87b8b6d0>

	Return the transpose of the sparse matrix.





	Parameters:	x – Sparse matrix.


	Returns:	x transposed.


	Note:	The returned matrix will not be in the
same format. csc matrix will be changed
in csr matrix and csr matrix in csc
matrix.


	Note:	The grad is regular, i.e. not structured.










	
theano.sparse.basic.true_dot(x, y, grad_preserves_dense=True)

	Operation for efficiently calculating the dot product when
one or all operands are sparse. Supported formats are CSC and CSR.
The output of the operation is sparse.





	Parameters:	
	x – Sparse matrix.

	y – Sparse matrix or 2d tensor variable.

	grad_preserves_dense – if True (default), makes the grad of
dense inputs dense.  Otherwise the grad is always sparse.






	Returns:	The dot product x.`y` in a sparse format.




	Note:	
	The grad implemented is regular, i.e. not structured.














	
theano.sparse.basic.usmm = <theano.sparse.basic.Usmm object at 0x7f2d8784f550>

	Performs the expression alpha * x y + z.





	Parameters:	
	x – Matrix variable.

	y – Matrix variable.

	z – Dense matrix.

	alpha – A tensor scalar.






	Returns:	The dense matrix resulting from alpha * x y + z.




	Note:	The grad is not implemented for this op.




	Note:	At least one of x or y must be a sparse matrix.












	
theano.sparse.basic.verify_grad_sparse(op, pt, structured=False, *args, **kwargs)

	Wrapper for theano.test.unittest_tools.py:verify_grad wich
converts sparse variables back and forth.





	Parameters:	
	op – Op to check.

	pt – List of inputs to realize the tests.

	structured – True to tests with a structured grad,
False otherwise.

	args – Other verify_grad parameters if any.

	kwargs – Other verify_grad keywords if any.






	Returns:	None












	
theano.sparse.basic.vstack(blocks, format=None, dtype=None)

	Stack sparse matrices vertically (row wise).

This wrap the method vstack from scipy.





	Parameters:	
	blocks – List of sparse array of compatible shape.

	format – String representing the output format. Default
is csc.

	dtype – Output dtype.






	Returns:	The concatenation of the sparse array row wise.




	Note:	The number of column of the sparse matrix must agree.




	Note:	The grad implemented is regular, i.e. not structured.















          

      

      

    


    
         Copyright 2008--2015, LISA lab.
      Last updated on Mar 27, 2015.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Theano 0.7 documentation 

          	Library Documentation 
 
      

    


    
      
          
            
  
sparse.sandbox –  Sparse Op Sandbox


API

Convolution-like operations with sparse matrix multiplication.

To read about different sparse formats, see
U{http://www-users.cs.umn.edu/~saad/software/SPARSKIT/paper.ps}.

@todo: Automatic methods for determining best sparse format?


	
class theano.sparse.sandbox.sp.ConvolutionIndices(use_c_code='/usr/bin/g++')

	Build indices for a sparse CSC matrix that could implement A
(convolve) B.


This generates a sparse matrix M, which generates a stack of
image patches when computing the dot product of M with image
patch. Convolution is then simply the dot product of (img x M)
and the kernels.



	
static evaluate(inshp, kshp, (dx, dy)=(1, 1), nkern=1, mode='valid', ws=True)

	Build a sparse matrix which can be used for performing...
* convolution: in this case, the dot product of this matrix
with the input images will generate a stack of images
patches. Convolution is then a tensordot operation of the
filters and the patch stack.
* sparse local connections: in this case, the sparse matrix
allows us to operate the weight matrix as if it were
fully-connected. The structured-dot with the input image gives
the output for the following layer.





	Parameters:	
	ker_shape – shape of kernel to apply (smaller than image)

	img_shape – shape of input images

	mode – ‘valid’ generates output only when kernel and
image overlap overlap fully. Convolution obtained
by zero-padding the input

	ws – True if weight sharing, false otherwise

	(dx,dy) – offset parameter. In the case of no weight sharing,
gives the pixel offset between two receptive fields.
With weight sharing gives the offset between the
top-left pixels of the generated patches






	Return type:	tuple(indices, indptr, logical_shape, sp_type, out_img_shp)




	Returns:	the structure of a sparse matrix, and the logical dimensions
of the image which will be the result of filtering.
















	
theano.sparse.sandbox.sp.applySparseFilter(kerns, kshp, nkern, images, imgshp, step=(1, 1), bias=None, mode='valid')

	“images” is assumed to be a matrix of shape batch_size x img_size,
where the second dimension represents each image in raster order

Output feature map will have shape:

batch_size x number of kernels * output_size






Note

IMPORTANT: note that this means that each feature map is
contiguous in memory.

The memory layout will therefore be:
[ <feature_map_0> <feature_map_1> ... <feature_map_n>],
where <feature_map> represents a “feature map” in raster order



Note that the concept of feature map doesn’t really apply to
sparse filters without weight sharing. Basically, nkern=1 will
generate one output img/feature map, nkern=2 a second feature map,
etc.

kerns is a 1D tensor, and assume to be of shape:

nkern * N.prod(outshp) x N.prod(kshp)





Each filter is applied seperately to consecutive output pixels.





	Parameters:	
	kerns – nkern*outsize*ksize vector containing kernels

	kshp – tuple containing actual dimensions of kernel (not symbolic)

	nkern – number of kernels to apply at each pixel in the
input image.  nkern=1 will apply a single unique
filter for each input pixel.

	images – bsize x imgsize matrix containing images on which
to apply filters

	imgshp – tuple containing actual image dimensions (not symbolic)

	step – determines number of pixels between adjacent receptive fields
(tuple containing dx,dy values)

	mode – ‘full’, ‘valid’ see CSM.evaluate function for details






	Returns:	out1, symbolic result




	Returns:	out2, logical shape of the output img (nkern,height,width)
(after dot product, not of the sparse matrix!)












	
theano.sparse.sandbox.sp.convolve(kerns, kshp, nkern, images, imgshp, step=(1, 1), bias=None, mode='valid', flatten=True)

	Convolution implementation by sparse matrix multiplication.





	Note:	For best speed, put the matrix which you expect to be
smaller as the ‘kernel’ argument





“images” is assumed to be a matrix of shape batch_size x img_size,
where the second dimension represents each image in raster order

If flatten is “False”, the output feature map will have shape:

batch_size x number of kernels x output_size





If flatten is “True”, the output feature map will have shape:

batch_size x number of kernels * output_size






Note

IMPORTANT: note that this means that each feature map (image
generate by each kernel) is contiguous in memory. The memory
layout will therefore be: [ <feature_map_0> <feature_map_1>
... <feature_map_n>], where <feature_map> represents a
“feature map” in raster order



kerns is a 2D tensor of shape nkern x N.prod(kshp)





	Parameters:	
	kerns – 2D tensor containing kernels which are applied at every pixel

	kshp – tuple containing actual dimensions of kernel (not symbolic)

	nkern – number of kernels/filters to apply.
nkern=1 will apply one common filter to all input pixels

	images – tensor containing images on which to apply convolution

	imgshp – tuple containing image dimensions

	step – determines number of pixels between adjacent receptive fields
(tuple containing dx,dy values)

	mode – ‘full’, ‘valid’ see CSM.evaluate function for details

	sumdims – dimensions over which to sum for the tensordot operation.
By default ((2,),(1,)) assumes kerns is a nkern x kernsize
matrix and images is a batchsize x imgsize matrix
containing flattened images in raster order

	flatten – flatten the last 2 dimensions of the output. By default,
instead of generating a batchsize x outsize x nkern tensor,
will flatten to batchsize x outsize*nkern






	Returns:	out1, symbolic result




	Returns:	out2, logical shape of the output img (nkern,heigt,width)




	TODO:	test for 1D and think of how to do n-d convolutions












	
theano.sparse.sandbox.sp.max_pool(images, imgshp, maxpoolshp)

	Implements a max pooling layer

Takes as input a 2D tensor of shape batch_size x img_size and
performs max pooling.  Max pooling downsamples by taking the max
value in a given area, here defined by maxpoolshp. Outputs a 2D
tensor of shape batch_size x output_size.





	Parameters:	
	images – 2D tensor containing images on which to apply convolution.
Assumed to be of shape batch_size x img_size

	imgshp – tuple containing image dimensions

	maxpoolshp – tuple containing shape of area to max pool over






	Returns:	out1, symbolic result (2D tensor)




	Returns:	out2, logical shape of the output












	
class theano.sparse.sandbox.sp2.Binomial(format, dtype)

	Return a sparse matrix having random values from a binomial
density having number of experiment n and probability of succes
p.

WARNING: This Op is NOT deterministic, as calling it twice with the
same inputs will NOT give the same result. This is a violation of
Theano’s contract for Ops





	Parameters:	
	n – Tensor scalar representing the number of experiment.

	p – Tensor scalar representing the probability of success.

	shape – Tensor vector for the output shape.






	Returns:	A sparse matrix of integers representing the number
of success.












	
class theano.sparse.sandbox.sp2.Multinomial(use_c_code='/usr/bin/g++')

	Return a sparse matrix having random values from a multinomial
density having number of experiment n and probability of succes
p.

WARNING: This Op is NOT deterministic, as calling it twice with the
same inputs will NOT give the same result. This is a violation of
Theano’s contract for Ops





	Parameters:	
	n – Tensor type vector or scalar representing the number of
experiment for each row. If n is a scalar, it will be
used for each row.

	p – Sparse matrix of probability where each row is a probability
vector representing the probability of succes. N.B. Each row
must sum to one.






	Returns:	A sparse matrix of random integers from a multinomial density
for each row.




	Note:	It will works only if p have csr format.












	
class theano.sparse.sandbox.sp2.Poisson(use_c_code='/usr/bin/g++')

	Return a sparse having random values from a Poisson density
with mean from the input.

WARNING: This Op is NOT deterministic, as calling it twice with the
same inputs will NOT give the same result. This is a violation of
Theano’s contract for Ops





	Parameters:	x – Sparse matrix.


	Returns:	A sparse matrix of random integers of a Poisson density
with mean of x element wise.
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scalar – Symbolic Scalar Types, Ops [doc TODO]
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gof – Theano Internals [doc TODO]



	fgraph – Graph Container [doc TODO]

	toolbox – [doc TODO]

	type – Interface for types of variables

	utils – Utilities functions operating on the graph
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fgraph – Graph Container [doc TODO]


Guide


FunctionGraph




FunctionGraph Features


FunctionGraph Feature List


	ReplaceValidate

	DestroyHandler










Reference


	
class fgraph.FunctionGraph

	*TODO*


Note

FunctionGraph(inputs, outputs) clones the inputs by
default. To avoid this behavior, add the parameter
clone=False. This is needed as we do not want cached constants
in fgraph.
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toolbox – [doc TODO]


Guide


	
class toolbox.Bookkeeper(object)

	




	
class toolbox.History(object)

	
	
revert(fgraph, checkpoint)

	
Reverts the graph to whatever it was at the provided

	
checkpoint (undoes all replacements).  A checkpoint at any

	
given time can be obtained using self.checkpoint().

	








	
class toolbox.Validator(object)

	




	
class toolbox.ReplaceValidate(History, Validator)

	
	
replace_validate(fgraph, var, new_var, reason=None)

	








	
class toolbox.NodeFinder(Bookkeeper)

	




	
class toolbox.PrintListener(object)
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type – Interface for types of variables


Reference

WRITEME Defines the Type class.


	
class theano.gof.type.CDataType(ctype, freefunc=None)

	Represents opaque C data to be passed around. The intent is to
ease passing arbitrary data between ops C code.






	
class theano.gof.type.CLinkerType

	Interface specification for Types that can be arguments to a CLinkerOp.

A CLinkerType instance is mainly reponsible  for providing the C code that
interfaces python objects with a C CLinkerOp implementation.

See WRITEME for a general overview of code generation by CLinker.


	
c_cleanup(name, sub)

	Return c code to clean up after c_extract.

This returns C code that should deallocate whatever c_extract
allocated or decrease the reference counts. Do not decrease
py_%(name)s’s reference count.

WRITEME





	Parameters:	
	
	name: WRITEME

	WRITEME







	
	sub: WRITEME

	WRITEME












	Exceptions:	
	MethodNotDefined: Subclass does not implement this method














	
c_code_cache_version()

	Return a tuple of integers indicating the version of this Type.

An empty tuple indicates an ‘unversioned’ Type that will not be cached between processes.

The cache mechanism may erase cached modules that have been superceded by newer
versions.  See ModuleCache for details.






	
c_declare(name, sub, check_input=True)

	Required: Return c code to declare variables that will be
instantiated by c_extract.

Example:
.. code-block: python


return “PyObject ** addr_of_%(name)s;”






	Parameters:	
	name (string) – the name of the PyObject * pointer that will  the value for this Type

	sub (dict string -> string) – a dictionary of special codes.  Most importantly
sub[‘fail’]. See CLinker for more info on sub and fail.






	Note:	It is important to include the name inside of variables which
are declared here, so that name collisions do not occur in the
source file that is generated.




	Note:	The variable called name is not necessarily defined yet
where this code is inserted.  This code might be inserted to
create class variables for example, whereas the variable name
might only exist inside certain functions in that class.




	Todo:	Why should variable declaration fail?  Is it even allowed to?




	Exceptions:	
	MethodNotDefined: Subclass does not implement this method














	
c_extract(name, sub, check_input=True)

	Required: Return c code to extract a PyObject * instance.

The code returned from this function must be templated using
%(name)s, representing the name that the caller wants to
call this Variable. The Python object self.data is in a
variable called “py_%(name)s” and this code must set the
variables declared by c_declare to something representative
of py_%(name)s. If the data is improper, set an appropriate
exception and insert “%(fail)s”.





	Todo:	Point out that template filling (via sub) is now performed
by this function. –jpt





Example:
.. code-block: python


return “if (py_%(name)s == Py_None)” +                        addr_of_%(name)s = &py_%(name)s;” +                   “else” +                   { PyErr_SetString(PyExc_ValueError,                        ‘was expecting None’); %(fail)s;}”






	Parameters:	
	name (string) – the name of the PyObject * pointer that will
store the value for this Type

	sub (dict string -> string) – a dictionary of special codes.  Most importantly
sub[‘fail’].  See CLinker for more info on sub and fail.






	Exceptions:	
	MethodNotDefined: Subclass does not implement this method














	
c_extract_out(name, sub, check_input=True)

	Optional: C code to extract a PyObject * instance.

Unlike c_extract, c_extract_out has to accept Py_None,
meaning that the variable should be left uninitialized.






	
c_init(name, sub)

	Required: Return c code to initialize the variables that were declared by
self.c_declare()

Example:
.. code-block: python


return “addr_of_%(name)s = NULL;”






	Note:	The variable called name is not necessarily defined yet
where this code is inserted.  This code might be inserted in a
class constructor for example, whereas the variable name
might only exist inside certain functions in that class.


	Todo:	Why should variable initialization fail?  Is it even allowed to?










	
c_is_simple()

	Optional: Return True for small or builtin C types.

A hint to tell the compiler that this type is a builtin C type or a
small struct and that its memory footprint is negligible.  Simple
objects may be passed on the stack.






	
c_literal(data)

	Optional: WRITEME





	Parameters:	
	
	data: WRITEME

	WRITEME












	Exceptions:	
	MethodNotDefined: Subclass does not implement this method














	
c_sync(name, sub)

	Required: Return c code to pack C types back into a PyObject.

The code returned from this function must be templated using “%(name)s”,
representing the name that the caller wants to call this Variable.  The
returned code may set “py_%(name)s” to a PyObject* and that PyObject*
will be accessible from Python via variable.data. Do not forget to adjust
reference counts if “py_%(name)s” is changed from its original value.





	Parameters:	
	
	name: WRITEME

	WRITEME







	
	sub: WRITEME

	WRITEME












	Exceptions:	
	MethodNotDefined: Subclass does not implement this method


















	
class theano.gof.type.Generic

	Represents a generic Python object.

This class implements the PureType and CLinkerType interfaces for generic PyObject
instances.

EXAMPLE of what this means, or when you would use this type.

WRITEME






	
class theano.gof.type.PureType

	Interface specification for variable type instances.

A Type instance is mainly reponsible for two things:


	creating Variable instances (conventionally, __call__ does this), and

	filtering a value assigned to a Variable so that the value conforms to restrictions
imposed by the type (also known as casting, this is done by filter),




	
class Constant(type, data, name=None)

	A Constant is a Variable with a value field that cannot be changed at runtime.

Constant nodes make eligible numerous optimizations: constant inlining in C code, constant folding, etc.


	
clone()

	We clone this object, but we don’t clone the data to lower memory requirement
We suppose that the data will never change.






	
value

	read-only data access method










	
class PureType.Variable(type, owner=None, index=None, name=None)

	A Variable is a node in an expression graph that represents a variable.

The inputs and outputs of every Apply (theano.gof.Apply) are Variable instances.
The input and output arguments to create a function are also Variable instances.
A Variable is like a strongly-typed variable in some other languages; each Variable contains a
reference to a Type instance that defines the kind of value the Variable can take in a
computation.

A Variable is a container for four important attributes:


	type a Type instance defining the kind of value this Variable can have,

	owner either None (for graph roots) or the Apply instance of which self is an output,

	index the integer such that owner.outputs[index] is this_variable (ignored if owner is None)

	name a string to use in pretty-printing and debugging.



There are a few kinds of Variables to be aware of: A Variable which is the output of a symbolic
computation has a reference to the Apply instance to which it belongs (property: owner) and
the position of itself in the owner’s output list (property: index).


	Variable (this base type) is typically the output of a symbolic computation,

	Constant (a subclass) which adds a default and un-replaceable value, and
requires that owner is None

	TensorVariable subclass of Variable that represents a numpy.ndarray object

	SharedTensorVariable Shared version of TensorVariable

	SparseVariable subclass of Variable that represents a scipy.sparse.{csc,csr}_matrix object

	CudaNdarrayVariable subclass of Variable that represents our object on the GPU that is a subset of numpy.ndarray

	RandomVariable



A Variable which is the output of a symbolic computation will have an owner
not equal to None.

Using the Variables’ owner field and the Apply nodes’ inputs fields, one can navigate a graph
from an output all the way to the inputs. The opposite direction is not possible until an
FunctionGraph has annotated the Variables with the clients field, ie, before the compilation process
has begun a Variable does not know which Apply nodes take it as input.

Code Example

import theano
from theano import tensor

a = tensor.constant(1.5)        # declare a symbolic constant
b = tensor.fscalar()            # declare a symbolic floating-point scalar

c = a + b                       # create a simple expression

f = theano.function([b], [c])   # this works because a has a value associated with it already

assert 4.0 == f(2.5)            # bind 2.5 to an internal copy of b and evaluate an internal c

theano.function([a], [c])       # compilation error because b (required by c) is undefined

theano.function([a,b], [c])     # compilation error because a is constant, it can't be an input

d = tensor.value(1.5)           # create a value similar to the constant 'a'
e = d + b
theano.function([d,b], [e])     # this works.  d's default value of 1.5 is ignored.





The python variables a,b,c all refer to instances of type Variable.
The Variable refered to by a is also an instance of Constant.

compile.function uses each Apply instance’s inputs attribute
together with each Variable’s owner field to determine which inputs are necessary to compute the function’s outputs.


	
clone()

	Return a new Variable like self.





	Return type:	Variable instance


	Returns:	a new Variable instance (or subclass instance) with no owner or index.


	Note:	tags are copied to the returned instance.


	Note:	name is copied to the returned instance.










	
eval(inputs_to_values=None)

	Evaluates this variable.

inputs_to_values: a dictionary mapping theano Variables to values.










	
PureType.filter(data, strict=False, allow_downcast=None)

	Required: Return data or an appropriately wrapped/converted data.

Subclass implementation should raise a TypeError exception if the data is not of an
acceptable type.

If strict is True, the data returned must be the same as the
data passed as an argument. If it is False, and allow_downcast
is True, filter may cast it to an appropriate type. If
allow_downcast is False, filter may only upcast it, not lose
precision. If allow_downcast is None (default), the behaviour can be
Type-dependent, but for now it means only Python floats can be
downcasted, and only to floatX scalars.





	Exceptions:	
	MethodNotDefined: subclass doesn’t implement this function.














	
PureType.filter_variable(other)

	Convert a symbolic variable into this Type, if compatible.

For the moment, the only Types compatible with one another are
TensorType and CudaNdarrayType, provided they have the same
number of dimensions, same broadcasting pattern, and same dtype.

If Types are not compatible, a TypeError should be raised.






	
PureType.is_valid_value(a)

	Required: Return True for any python object a that would be a legal value for a Variable of this Type






	
PureType.make_variable(name=None)

	Return a new Variable instance of Type self.





	Parameters:	
	
	name: None or str

	A pretty string for printing and debugging.




















	
PureType.value_validity_msg(a)

	Optional: return a message explaining the output of is_valid_value






	
PureType.values_eq(a, b)

	Return True if a and b can be considered exactly equal.

a and b are assumed to be valid values of this Type.






	
PureType.values_eq_approx(a, b)

	Return True if a and b can be considered approximately equal.





	Parameters:	
	a – a potential value for a Variable of this Type.

	b – a potential value for a Variable of this Type.






	Return type:	Bool







This function is used by theano debugging tools to decide
whether two values are equivalent, admitting a certain amount
of numerical instability.  For example, for floating-point
numbers this function should be an approximate comparison.

By default, this does an exact comparison.










	
class theano.gof.type.SingletonType

	Convenient Base class for a Type subclass with no attributes

It saves having to implement __eq__ and __hash__






	
class theano.gof.type.Type

	Convenience wrapper combining PureType and CLinkerType.

Theano comes with several subclasses of such as:


	Generic: for any python type

	TensorType: for numpy.ndarray

	SparseType: for scipy.sparse



But you are encouraged to write your own, as described in WRITEME.

The following following code illustrates the use of a Type instance, here tensor.fvector:

# Declare a symbolic floating-point vector using __call__
b = tensor.fvector()

# Create a second Variable with the same Type instance
c = tensor.fvector()





Whenever you create a symbolic variable in theano (technically, Variable) it will contain a
reference to a Type instance.  That reference is typically constant during the lifetime of
the Variable.  Many variables can refer to a single Type instance, as do b and c above.  The
Type instance defines the kind of value which might end up in that variable when executing
a Function.  In this sense, theano is like a strongly-typed language because the types
are included in the graph before the values.  In our example above, b is a Variable which is
guaranteed to correspond to a numpy.ndarray of rank 1 when we try to do some computations
with it.

Many Op instances will raise an exception if they are applied to inputs with incorrect
types.  Type references are also useful to do type-checking in pattern-based optimizations.


	
convert_variable(var)

	Patch variable so that its type will match self, if possible.

If the variable can’t be converted, this should return None.

The conversion can only happen if the following implication is
true for all possible val.


self.is_valid_value(val) => var.type.is_valid_value(val)


For the majority of types this means that you can only have
non-broadcastable dimensions become broadcastable and not the
inverse.

The default is to not convert anything which is always safe.
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utils – Utilities functions operating on the graph


Reference


	
exception theano.gof.utils.MethodNotDefined

	To be raised by functions defined as part of an interface.

When the user sees such an error, it is because an important interface
function has been left out of an implementation class.






	
theano.gof.utils.add_tag_trace(thing, user_line=1)

	Add tag.trace to an node or variable.

The argument is returned after being affected (inplace).
:param thing: the object where we add .tag.trace
:param user_line: The max number of user line to keep.





	Note:	we alse use config.traceback.limit for the maximum number
of stack level we look.










	
theano.gof.utils.deprecated(filename, msg='')

	Decorator which will print a warning message on the first call.

Use it like this:

@deprecated('myfile', 'do something different...')
def fn_name(...)
    ...





And it will print:

WARNING myfile.fn_name deprecated. do something different...










	
theano.gof.utils.difference(seq1, seq2)

	Returns all elements in seq1 which are not in seq2: i.e seq1\seq2






	
theano.gof.utils.flatten(a)

	Recursively flatten tuple, list and set in a list.






	
theano.gof.utils.give_variables_names(variables)

	Gives unique names to an iterable of variables. Modifies input.

This function is idempotent.






	
theano.gof.utils.memoize(f)

	Cache the return value for each tuple of arguments
(which must be hashable)






	
theano.gof.utils.remove(predicate, coll)

	Return those items of collection for which predicate(item) is true.

>>> from itertoolz import remove
>>> def even(x):
...     return x % 2 == 0
>>> remove(even, [1, 2, 3, 4])
[1, 3]










	
theano.gof.utils.simple_extract_stack(f=None, limit=None)

	This is traceback.extract_stack from python 2.7 with this
change:


	Comment the update of the cache



This is because this update cause an call to os.stat to get the
line content. This cause too much long on cluster.






	
theano.gof.utils.toposort(prereqs_d)

	Sorts prereqs_d.keys() topologically.

prereqs_d[x] contains all the elements that must come before x
in the ordering.






	
theano.gof.utils.uniq(seq)

	Do not use set, this must always return the same value at the same index.
If we just exchange other values, but keep the same pattern of duplication,
we must keep the same order.
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scan – Looping in Theano


Guide

The scan functions provides the basic functionality needed to do loops
in Theano. Scan comes with many whistles and bells, which we will introduce
by way of examples.


Simple loop with accumulation:  Computing [image: A^k]

Assume that, given k you want to get A**k using a loop.
More precisely, if A is a tensor you want to compute
A**k elemwise. The python/numpy code might look like:

result = 1
for i in xrange(k):
  result = result * A





There are three things here that we need to handle: the initial value
assigned to result, the accumulation of results in result, and
the unchanging variable A. Unchanging variables are passed to scan as
non_sequences. Initialization occurs in outputs_info, and the accumulation
happens automatically.

The equivalent Theano code would be:

k = T.iscalar("k")
A = T.vector("A")

# Symbolic description of the result
result, updates = theano.scan(fn=lambda prior_result, A: prior_result * A,
                              outputs_info=T.ones_like(A),
                              non_sequences=A,
                              n_steps=k)

# We only care about A**k, but scan has provided us with A**1 through A**k.
# Discard the values that we don't care about. Scan is smart enough to
# notice this and not waste memory saving them.
final_result = result[-1]

# compiled function that returns A**k
power = theano.function(inputs=[A,k], outputs=final_result, updates=updates)

print power(range(10),2)
print power(range(10),4)





Let us go through the example line by line. What we did is first to
construct a function (using a lambda expression) that given prior_result and
A returns prior_result * A. The order of parameters is fixed by scan:
the output of the prior call to fn (or the initial value, initially)
is the first parameter, followed by all non-sequences.

Next we initialize the output as a tensor with same shape and dtype as A,
filled with ones. We give A to scan as a non sequence parameter and
specify the number of steps k to iterate over our lambda expression.

Scan returns a tuple containing our result (result) and a
dictionary of updates (empty in this case). Note that the result
is not a matrix, but a 3D tensor containing the value of A**k for
each step. We want the last value (after k steps) so we compile
a function to return just that. Note that there is an optimization, that
at compile time will detect that you are using just the last value of the
result and ensure that scan does not store all the intermediate values
that are used. So do not worry if A and k are large.




Iterating over the first dimension of a tensor: Calculating a polynomial

In addition to looping a fixed number of times, scan can iterate over
the leading dimension of tensors (similar to Python’s for x in a_list).

The tensor(s) to be looped over should be provided to scan using the
sequence keyword argument.

Here’s an example that builds a symbolic calculation of a polynomial
from a list of its coefficients:

coefficients = theano.tensor.vector("coefficients")
x = T.scalar("x")

max_coefficients_supported = 10000

# Generate the components of the polynomial
components, updates = theano.scan(fn=lambda coefficient, power, free_variable: coefficient * (free_variable ** power),
                                  outputs_info=None,
                                  sequences=[coefficients, theano.tensor.arange(max_coefficients_supported)],
                                  non_sequences=x)
# Sum them up
polynomial = components.sum()

# Compile a function
calculate_polynomial = theano.function(inputs=[coefficients, x], outputs=polynomial)

# Test
test_coefficients = numpy.asarray([1, 0, 2], dtype=numpy.float32)
test_value = 3
print calculate_polynomial(test_coefficients, test_value)
print 1.0 * (3 ** 0) + 0.0 * (3 ** 1) + 2.0 * (3 ** 2)





There are a few things to note here.

First, we calculate the polynomial by first generating each of the coefficients, and
then summing them at the end. (We could also have accumulated them along the way, and then
taken the last one, which would have been more memory-efficient, but this is an example.)

Second, there is no accumulation of results, we can set outputs_info to None. This indicates
to scan that it doesn’t need to pass the prior result to fn.

The general order of function parameters to fn is:

sequences (if any), prior result(s) (if needed), non-sequences (if any)





Third, there’s a handy trick used to simulate python’s enumerate: simply include
theano.tensor.arange to the sequences.

Fourth, given multiple sequences of uneven lengths, scan will truncate to the shortest of them.
This makes it safe to pass a very long arange, which we need to do for generality, since
arange must have its length specified at creation time.




Simple accumulation into a scalar, ditching lambda

Although this example would seem almost self-explanatory, it stresses a
pitfall to be careful of: the initial output state that is supplied, that is
output_info, must be of a shape similar to that of the output variable
generated at each iteration and moreover, it must not involve an implicit
downcast of the latter.

import numpy as np
import theano
import theano.tensor as T

up_to = T.iscalar("up_to")

# define a named function, rather than using lambda
def accumulate_by_adding(arange_val, sum_to_date):
    return sum_to_date + arange_val
seq = T.arange(up_to)

# An unauthorized implicit downcast from the dtype of 'seq', to that of
# 'T.as_tensor_variable(0)' which is of dtype 'int8' by default would occur
# if this instruction were to be used instead of the next one:
# outputs_info = T.as_tensor_variable(0)

outputs_info = T.as_tensor_variable(np.asarray(0, seq.dtype))
scan_result, scan_updates = theano.scan(fn=accumulate_by_adding,
                                        outputs_info=outputs_info,
                                        sequences=seq)
triangular_sequence = theano.function(inputs=[up_to], outputs=scan_result)

# test
some_num = 15
print triangular_sequence(some_num)
print [n * (n + 1) // 2 for n in xrange(some_num)]








Another simple example

Unlike some of the prior examples, this one is hard to reproduce except by using scan.

This takes a sequence of array indices, and values to place there,
and a “model” output array (whose shape and dtype will be mimicked),
and produces a sequence of arrays with the shape and dtype of the model,
with all values set to zero except at the provided array indices.

location = T.imatrix("location")
values = T.vector("values")
output_model = T.matrix("output_model")

def set_value_at_position(a_location, a_value, output_model):
    zeros = T.zeros_like(output_model)
    zeros_subtensor = zeros[a_location[0], a_location[1]]
    return T.set_subtensor(zeros_subtensor, a_value)

result, updates = theano.scan(fn=set_value_at_position,
                              outputs_info=None,
                              sequences=[location, values],
                              non_sequences=output_model)

assign_values_at_positions = theano.function(inputs=[location, values, output_model], outputs=result)

# test
test_locations = numpy.asarray([[1, 1], [2, 3]], dtype=numpy.int32)
test_values = numpy.asarray([42, 50], dtype=numpy.float32)
test_output_model = numpy.zeros((5, 5), dtype=numpy.float32)
print assign_values_at_positions(test_locations, test_values, test_output_model)





This demonstrates that you can introduce new Theano variables into a scan function.




Multiple outputs, several taps values - Recurrent Neural Network with Scan

The examples above showed simple uses of scan. However, scan also supports
referring not only to the prior result and the current sequence value, but
also looking back more than one step.

This is needed, for example, to implement a RNN using scan. Assume
that our RNN is defined as follows :


[image: x(n) = \tanh( W x(n-1) + W^{in}_1 u(n) + W^{in}_2 u(n-4) + W^{feedback} y(n-1) )  y(n) = W^{out} x(n- 3)]


Note that this network is far from a classical recurrent neural
network and might be useless. The reason we defined as such
is to better illustrate the features of scan.

In this case we have a sequence over which we need to iterate u,
and two outputs x and y. To implement this with scan we first
construct a function that computes one iteration step :

def oneStep(u_tm4, u_t, x_tm3, x_tm1, y_tm1, W, W_in_1, W_in_2,  W_feedback, W_out):

  x_t = T.tanh( theano.dot(x_tm1, W) + \
                theano.dot(u_t,   W_in_1) + \
                theano.dot(u_tm4, W_in_2) + \
                theano.dot(y_tm1, W_feedback))
  y_t = theano.dot(x_tm3, W_out)

  return [x_t, y_t]





As naming convention for the variables we used a_tmb to mean a at
t-b and a_tpb to be a at t+b.
Note the order in which the parameters are given, and in which the
result is returned. Try to respect chronological order among
the taps ( time slices of sequences or outputs) used. For scan is crucial only
for the variables representing the different time taps to be in the same order
as the one in which these taps are given. Also, not only taps should respect
an order, but also variables, since this is how scan figures out what should
be represented by what. Given that we have all
the Theano variables needed we construct our RNN as follows :

u  = T.matrix() # it is a sequence of vectors
x0 = T.matrix() # initial state of x has to be a matrix, since
                # it has to cover x[-3]
y0 = T.vector() # y0 is just a vector since scan has only to provide
                # y[-1]


([x_vals, y_vals],updates) = theano.scan(fn = oneStep, \
                             sequences    = dict(input = u, taps= [-4,-0]), \
                             outputs_info = [dict(initial = x0, taps = [-3,-1]),y0], \
                             non_sequences  = [W,W_in_1,W_in_2,W_feedback, W_out])
     # for second input y, scan adds -1 in output_taps by default





Now x_vals and y_vals are symbolic variables pointing to the
sequence of x and y values generated by iterating over u. The
sequence_taps, outputs_taps give to scan information about what
slices are exactly needed. Note that if we want to use x[t-k] we do
not need to also have x[t-(k-1)], x[t-(k-2)],.., but when applying
the compiled function, the numpy array given to represent this sequence
should be large enough to cover this values. Assume that we compile the
above function, and we give as u the array uvals = [0,1,2,3,4,5,6,7,8].
By abusing notations, scan will consider uvals[0] as u[-4], and
will start scaning from uvals[4] towards the end.




Using shared variables - Gibbs sampling

Another useful feature of scan, is that it can handle shared variables.
For example, if we want to implement a Gibbs chain of length 10 we would do
the following:

W = theano.shared(W_values) # we assume that ``W_values`` contains the
                            # initial values of your weight matrix

bvis = theano.shared(bvis_values)
bhid = theano.shared(bhid_values)

trng = T.shared_randomstreams.RandomStreams(1234)

def OneStep(vsample) :
   hmean = T.nnet.sigmoid(theano.dot(vsample, W) + bhid)
   hsample = trng.binomial(size=hmean.shape, n=1, p=hmean)
   vmean = T.nnet.sigmoid(theano.dot(hsample, W.T) + bvis)
   return trng.binomial(size=vsample.shape, n=1, p=vmean,
                        dtype=theano.config.floatX)

sample = theano.tensor.vector()

values, updates = theano.scan(OneStep, outputs_info=sample, n_steps=10)

gibbs10 = theano.function([sample], values[-1], updates=updates)





Note that if we use shared variables ( W, bvis, bhid) but
we do not iterate over them (so scan doesn’t really need to know
anything in particular about them, just that they are used inside the
function applied at each step) you do not need to pass them as
arguments. Scan will find them on its own and add them to the graph. Of
course, if you wish to (and it is good practice) you can add them, when
you call scan (they would be in the list of non-sequence inputs).

The second, and probably most crucial observation is that the updates
dictionary becomes important in this case. It links a shared variable
with its updated value after k steps. In this case it tells how the
random streams get updated after 10 iterations. If you do not pass this
update dictionary to your function, you will always get the same 10
sets of random numbers. You can even use the updates dictionary
afterwards. Look at this example :

a = theano.shared(1)
values, updates = theano.scan(lambda: {a: a+1}, n_steps=10)





In this case the lambda expression does not require any input parameters
and returns an update dictionary which tells how a should be updated
after each step of scan. If we write :

b = a + 1
c = updates[a] + 1
f = theano.function([], [b, c], updates=updates)

print b
print c
print a.value





We will see that because b does not use the updated version of
a, it will be 2, c will be 12, while a.value is 11.
If we call the function again, b will become 12, c will be 22
and a.value 21.

If we do not pass the updates dictionary to the function, then
a.value will always remain 1, b will always be 2 and c
will always be 12.




Conditional ending of Scan

Scan can also be used as a repeat-until block. In such a case scan
will stop when either the maximal number of iteration is reached, or the
provided condition evaluates to True.

For an example, we will compute all powers of two smaller then some provided
value max_value.

def power_of_2(previous_power, max_value):
    return previous_power*2, theano.scan_module.until(previous_power*2 > max_value)

max_value = T.scalar()
values, _ = theano.scan(power_of_2,
                        outputs_info = T.constant(1.),
                        non_sequences = max_value,
                        n_steps = 1024)

f = theano.function([max_value], values)

print f(45)





As you can see, in order to terminate on condition, the only thing required
is that the inner function power_of_2 to return also the condition
wrapped in the class theano.scan_module.until. The condition has to be
expressed in terms of the arguments of the inner function (in this case
previous_power and max_value).

As a rule, scan always expects the condition to be the last thing returned
by the inner function, otherwise an error will be raised.






reference

This module provides the Scan Op

Scanning is a general form of recurrence, which can be used for looping.
The idea is that you scan a function along some input sequence, producing
an output at each time-step that can be seen (but not modified) by the
function at the next time-step. (Technically, the function can see the
previous K  time-steps of your outputs and L time steps (from the past and
future) of your inputs.

So for example, sum() could be computed by scanning the z+x_i
function over a list, given an initial state of z=0.

Special cases:


	A reduce operation can be performed by returning only the last
output of a scan.

	A map operation can be performed by applying a function that
ignores previous steps of the outputs.



Often a for-loop can be expressed as a scan() operation, and scan is
the closest that theano comes to looping. The advantage of using scan
over for loops is that it allows the number of iterations to be a part of
the symbolic graph.

The Scan Op should typically be used by calling any of the following
functions: scan(), map(), reduce(), foldl(),
foldr().


	
theano.map(fn, sequences, non_sequences=None, truncate_gradient=-1, go_backwards=False, mode=None, name=None)

	Similar behaviour as python’s map.





	Parameters:	
	fn – The function that map applies at each iteration step
(see scan for more info).

	sequences – List of sequences over which map iterates
(see scan for more info).

	non_sequences – List of arguments passed to fn. map will
not iterate over these arguments (see scan for
more info).

	truncate_gradient – See scan.

	go_backwards – Boolean value that decides the direction of
iteration. True means that sequences are parsed
from the end towards the begining, while False
is the other way around.

	mode – See scan.

	name – See scan.














	
theano.reduce(fn, sequences, outputs_info, non_sequences=None, go_backwards=False, mode=None, name=None)

	Similar behaviour as python’s reduce





	Parameters:	
	fn – The function that reduce applies at each iteration step
(see scan  for more info).

	sequences – List of sequences over which reduce iterates
(see scan for more info)

	outputs_info – List of dictionaries describing the outputs of
reduce (see scan for more info).

	non_sequences – List of arguments passed to fn. reduce will
not iterate over these arguments (see scan for
more info).

	go_backwards – Boolean value that decides the direction of
iteration. True means that sequences are parsed
from the end towards the begining, while False
is the other way around.

	mode – See scan.

	name – See scan.














	
theano.foldl(fn, sequences, outputs_info, non_sequences=None, mode=None, name=None)

	Similar behaviour as haskell’s foldl





	Parameters:	
	fn – The function that foldl applies at each iteration step
(see scan for more info).

	sequences – List of sequences over which foldl iterates
(see scan for more info)

	outputs_info – List of dictionaries describing the outputs of
reduce (see scan for more info).

	non_sequences – List of arguments passed to fn. foldl will
not iterate over these arguments (see scan for
more info).

	mode – See scan.

	name – See scan.














	
theano.foldr(fn, sequences, outputs_info, non_sequences=None, mode=None, name=None)

	Similar behaviour as haskell’ foldr





	Parameters:	
	fn – The function that foldr applies at each iteration step
(see scan for more info).

	sequences – List of sequences over which foldr iterates
(see scan for more info)

	outputs_info – List of dictionaries describing the outputs of
reduce (see scan for more info).

	non_sequences – List of arguments passed to fn. foldr will
not iterate over these arguments (see scan for
more info).

	mode – See scan.

	name – See scan.














	
theano.scan(fn, sequences=None, outputs_info=None, non_sequences=None, n_steps=None, truncate_gradient=-1, go_backwards=False, mode=None, name=None, profile=False, allow_gc=None, strict=False)

	This function constructs and applies a Scan op to the provided
arguments.





	Parameters:	
	fn – fn is a function that describes the operations involved in one
step of scan. fn should construct variables describing the
output of one iteration step. It should expect as input theano
variables representing all the slices of the input sequences
and previous values of the outputs, as well as all other arguments
given to scan as non_sequences. The order in which scan passes
these variables to fn  is the following :


	all time slices of the first sequence

	all time slices of the second sequence

	...

	all time slices of the last sequence

	all past slices of the first output

	all past slices of the second otuput

	...

	all past slices of the last output

	
	all other arguments (the list given as non_sequences to

	scan)







The order of the sequences is the same as the one in the list
sequences given to scan. The order of the outputs is the same
as the order of outputs_info. For any sequence or output the
order of the time slices is the same as the one in which they have
been given as taps. For example if one writes the following :

scan(fn, sequences = [ dict(input= Sequence1, taps = [-3,2,-1])
                     , Sequence2
                     , dict(input =  Sequence3, taps = 3) ]
       , outputs_info = [ dict(initial =  Output1, taps = [-3,-5])
                        , dict(initial = Output2, taps = None)
                        , Output3 ]
       , non_sequences = [ Argument1, Argument2])





fn should expect the following arguments in this given order:


	Sequence1[t-3]

	Sequence1[t+2]

	Sequence1[t-1]

	Sequence2[t]

	Sequence3[t+3]

	Output1[t-3]

	Output1[t-5]

	Output3[t-1]

	Argument1

	Argument2



The list of non_sequences can also contain shared variables
used in the function, though scan is able to figure those
out on its own so they can be skipped. For the clarity of the
code we recommend though to provide them to scan. To some extend
scan can also figure out other non sequences (not shared)
even if not passed to scan (but used by fn). A simple example of
this would be :

import theano.tensor as TT
W   = TT.matrix()
W_2 = W**2
def f(x):
    return TT.dot(x,W_2)





The function is expected to return two things. One is a list of
outputs ordered in the same order as outputs_info, with the
difference that there should be only one output variable per
output initial state (even if no tap value is used). Secondly
fn should return an update dictionary (that tells how to
update any shared variable after each iteration step). The
dictionary can optionally be given as a list of tuples. There is
no constraint on the order of these two list, fn can return
either (outputs_list, update_dictionary) or
(update_dictionary, outputs_list) or just one of the two (in
case the other is empty).

To use scan as a while loop, the user needs to change the
function fn such that also a stopping condition is returned.
To do so, he/she needs to wrap the condition in an until class.
The condition should be returned as a third element, for example:

...
return [y1_t, y2_t], {x:x+1}, theano.scan_module.until(x < 50)





Note that a number of steps (considered in here as the maximum
number of steps ) is still required even though a condition is
passed (and it is used to allocate memory if needed). = {}):



	sequences – sequences is the list of Theano variables or dictionaries
describing the sequences scan has to iterate over. If a
sequence is given as wrapped in a dictionary, then a set of optional
information can be provided about the sequence. The dictionary
should have the following keys:


	input (mandatory) – Theano variable representing the
sequence.

	taps – Temporal taps of the sequence required by fn.
They are provided as a list of integers, where a value k
impiles that at iteration step t scan will pass to fn
the slice t+k. Default value is [0]



Any Theano variable in the list sequences is automatically
wrapped into a dictionary where taps is set to [0]



	outputs_info – outputs_info is the list of Theano variables or dictionaries
describing the initial state of the outputs computed
recurrently. When this initial states are given as dictionary
optional information can be provided about the output corresponding
to these initial states. The dictionary should have the following
keys:


	initial – Theano variable that represents the initial
state of a given output. In case the output is not computed
recursively (think of a map) and does not require an initial
state this field can be skipped. Given that (only) the previous
time step of the output is used by fn, the initial state
should have the same shape as the output and should not
involve a downcast of the data type of the output. If multiple
time taps are used, the initial state should have one extra
dimension that should cover all the possible taps. For example
if we use -5, -2 and -1 as past taps, at step 0,
fn will require (by an abuse of notation) output[-5],
output[-2] and output[-1]. This will be given by
the initial state, which in this case should have the shape
(5,)+output.shape. If this variable containing the initial
state is called init_y then init_y[0] corresponds to
output[-5]. init_y[1] correponds to output[-4],
init_y[2] corresponds to output[-3], init_y[3]
coresponds to output[-2], init_y[4] corresponds to
output[-1]. While this order might seem strange, it comes
natural from splitting an array at a given point. Assume that
we have a array x, and we choose k to be time step
0. Then our initial state would be x[:k], while the
output will be x[k:]. Looking at this split, elements in
x[:k] are ordered exactly like those in init_y.

	taps – Temporal taps of the output that will be pass to
fn. They are provided as a list of negative integers,
where a value k implies that at iteration step t scan
will pass to fn the slice t+k.



scan will follow this logic if partial information is given:


	If an output is not wrapped in a dictionary, scan will wrap
it in one assuming that you use only the last step of the output
(i.e. it makes your tap value list equal to [-1]).

	If you wrap an output in a dictionary and you do not provide any
taps but you provide an initial state it will assume that you are
using only a tap value of -1.

	If you wrap an output in a dictionary but you do not provide any
initial state, it assumes that you are not using any form of
taps.

	If you provide a None instead of a variable or a empty
dictionary scan assumes that you will not use any taps for
this output (like for example in case of a map)



If outputs_info is an empty list or None, scan assumes
that no tap is used for any of the outputs. If information is
provided just for a subset of the outputs an exception is
raised (because there is no convention on how scan should map
the provided information to the outputs of fn)



	non_sequences – non_sequences is the list of arguments that are passed to
fn at each steps. One can opt to exclude variable
used in fn from this list as long as they are part of the
computational graph, though for clarity we encourage not to do so.

	n_steps – n_steps is the number of steps to iterate given as an int
or Theano scalar. If any of the input sequences do not have
enough elements, scan will raise an error. If the value is 0 the
outputs will have 0 rows. If the value is negative, scan
will run backwards in time. If the go_backwards flag is already
set and also n_steps is negative, scan will run forward
in time. If n_steps is not provided, scan will figure
out the amount of steps it should run given its input sequences.

	truncate_gradient – truncate_gradient is the number of steps to use in truncated
BPTT.  If you compute gradients through a scan op, they are
computed using backpropagation through time. By providing a
different value then -1, you choose to use truncated BPTT instead
of classical BPTT, where you go for only truncate_gradient
number of steps back in time.

	go_backwards – go_backwards is a flag indicating if scan should go
backwards through the sequences. If you think of each sequence
as indexed by time, making this flag True would mean that
scan goes back in time, namely that for any sequence it
starts from the end and goes towards 0.

	name – When profiling scan, it is crucial to provide a name for any
instance of scan. The profiler will produce an overall
profile of your code as well as profiles for the computation of
one step of each instance of scan. The name of the instance
appears in those profiles and can greatly help to disambiguate
information.

	mode – It is recommended to leave this argument to None, especially
when profiling scan (otherwise the results are not going to
be accurate). If you prefer the computations of one step of
scan to be done differently then the entire function, you
can use this parameter to describe how the computations in this
loop are done (see theano.function for details about
possible values and their meaning).

	profile – Flag or string. If true, or different from the empty string, a
profile object will be created and attached to the inner graph of
scan. In case profile is True, the profile object will have the
name of the scan instance, otherwise it will have the passed string.
Profile object collect (and print) information only when running the
inner graph with the new cvm linker ( with default modes,
other linkers this argument is useless)

	allow_gc – Set the value of allow gc for the internal graph of scan.  If
set to None, this will use the value of config.scan.allow_gc.

	strict – If true, all the shared variables used in fn must be provided as a
part of non_sequences or sequences.






	Return type:	tuple




	Returns:	tuple of the form (outputs, updates); outputs is either a
Theano variable or a list of Theano variables representing the
outputs of scan (in the same order as in
outputs_info). updates is a subclass of dictionary
specifying the
update rules for all shared variables used in scan
This dictionary should be passed to theano.function when
you compile your function. The change compared to a normal
dictionary is that we validate that keys are SharedVariable
and addition of those dictionary are validated to be consistent.
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sandbox.cuda – List of CUDA GPU Op implemented

Normally you should not call directly those Ops! Theano should automatically transform cpu ops to their gpu equivalent. So this list is just useful to let people know what is implemented on the gpu.


Basic Op


	
class theano.sandbox.cuda.basic_ops.CopyOnNegativeStrides(use_c_code='/usr/bin/g++')

	Checks if the input has contains negative strides. If it
does, returns a c contiguous copy.






	
class theano.sandbox.cuda.basic_ops.GpuAdvancedIncSubtensor1(inplace=False, set_instead_of_inc=False)

	Implement AdvancedIncSubtensor1 on the gpu.






	
class theano.sandbox.cuda.basic_ops.GpuAdvancedIncSubtensor1_dev20(inplace=False, set_instead_of_inc=False)

	Implement AdvancedIncSubtensor1 on the gpu, but use function
only avail on compute capability 2.0 and more recent.


	
make_node(x, y, ilist)

	It defer from GpuAdvancedIncSubtensor1 in that it make sure
the index are of type long.










	
class theano.sandbox.cuda.basic_ops.GpuAdvancedSubtensor1(sparse_grad=False)

	Implement AdvancedSubtensor1 on the gpu.






	
class theano.sandbox.cuda.basic_ops.GpuAlloc(memset_0=False)

	Implement Alloc on the gpu.

The memset_0 param is an optimization. When True, we call
cudaMalloc that is faster.






	
class theano.sandbox.cuda.basic_ops.GpuCAReduce(reduce_mask, scalar_op, pre_scalar_op=None)

	GpuCAReduce is a Reduction along some dimensions by a scalar op.

The dimensions along which to reduce is specified by the
reduce_mask that you pass to the constructor.  The reduce_mask
is a tuple of booleans (actually integers 0 or 1) that specify for
each input dimension, whether to reduce it (1) or not (0).

For example, when scalar_op is a theano.scalar.basic.Add instance:



	reduce_mask == (1,) sums a vector to a scalar

	reduce_mask == (1,0) computes the sum of each column in a matrix

	reduce_mask == (0,1) computes the sum of each row in a matrix

	reduce_mask == (1,1,1) computes the sum of all elements in a 3-tensor.










	Note:	any reduce_mask of all zeros is a sort of ‘copy’, and may
be removed during graph optimization





This Op is a work in progress.

This op was recently upgraded from just GpuSum a general CAReduce. Not
many code cases are supported for scalar_op being anything other than
scal.Add instances yet.

Important note: if you implement new cases for this op, be sure to
benchmark them and make sure that they actually result in a speedup.
GPUs are not especially well-suited to reduction operations so it is
quite possible that the GPU might be slower for some cases.

pre_scalar_op: if present, must be a scalar op with only 1
input. We will execute it on the input value before reduction.


	
c_code_reduce_01X(sio, node, name, x, z, fail, N)

	



	Parameters:	N – the number of 1 in the pattern N=1 -> 01, N=2 -> 011 N=3 ->0111
Work for N=1,2,3










	
c_code_reduce_ccontig(sio, node, name, x, z, fail)

	WRITEME
IG: I believe, based on how this is called in c_code, that it
is for the case where we are reducing on all axes and x is
C contiguous.






	
supports_c_code(inputs)

	Returns True if the current op and reduce pattern
has functioning C code










	
class theano.sandbox.cuda.basic_ops.GpuContiguous(use_c_code='/usr/bin/g++')

	Always return a c contiguous output. Copy the input only if it is
not already c contiguous.






	
class theano.sandbox.cuda.basic_ops.GpuDimShuffle(input_broadcastable, new_order)

	Implement DimShuffle on the gpu.






	
class theano.sandbox.cuda.basic_ops.GpuElemwise(scalar_op, inplace_pattern=None, sync=None)

	Implement a generic elemwise on the gpu.






	
class theano.sandbox.cuda.basic_ops.GpuFlatten(outdim=1)

	Implement Flatten on the gpu.






	
class theano.sandbox.cuda.basic_ops.GpuFromHost(use_c_code='/usr/bin/g++')

	Implement the transfer from cpu to the gpu.






	
class theano.sandbox.cuda.basic_ops.GpuIncSubtensor(idx_list, inplace=False, set_instead_of_inc=False, destroyhandler_tolerate_aliased=None)

	Implement IncSubtensor on the gpu.


	Note: The optimization to make this inplace is in tensor/opt.

	The same optimization handles IncSubtensor and GpuIncSubtensor.
This Op has c_code too; it inherits tensor.IncSubtensor’s c_code.
The helper methods like do_type_checking, copy_of_x, etc. specialize
the c_code for this Op.




	
copy_into(view, source)

	view: string, C code expression for an array
source: string, C code expression for an array

returns a C code expression to copy source into view, and
return 0 on success






	
copy_of_x(x)

	



	Parameters:	x – a string giving the name of a C variable
pointing to an array


	Returns:	C code expression to make a copy of x





Base class uses PyArrayObject *, subclasses may override for
different types of arrays.






	
do_type_checking(node)

	Should raise NotImplementedError if c_code does not support
the types involved in this node.






	
get_helper_c_code_args()

	Return a dictionary of arguments to use with helper_c_code






	
make_view_array(x, view_ndim)

	



	Parameters:	
	x – a string identifying an array to be viewed

	view_ndim – a string specifying the number of dimensions
to have in the view









This doesn’t need to actually set up the view with the
right indexing; we’ll do that manually later.










	
class theano.sandbox.cuda.basic_ops.GpuJoin(use_c_code='/usr/bin/g++')

	Implement Join on the gpu.






	
class theano.sandbox.cuda.basic_ops.GpuReshape(ndim, name=None)

	Implement Reshape on the gpu.






	
class theano.sandbox.cuda.basic_ops.GpuShape(use_c_code='/usr/bin/g++')

	Implement Shape on the gpu.






	
class theano.sandbox.cuda.basic_ops.GpuSubtensor(idx_list)

	Implement subtensor on the gpu.






	
class theano.sandbox.cuda.basic_ops.HostFromGpu(use_c_code='/usr/bin/g++')

	Implement the transfer from gpu to the cpu.






	
theano.sandbox.cuda.basic_ops.col(name=None, dtype=None)

	Return a symbolic column variable (ndim=2, broadcastable=[False,True]).
:param dtype: numeric type (None means to use theano.config.floatX)
:param name: a name to attach to this variable






	
theano.sandbox.cuda.basic_ops.matrix(name=None, dtype=None)

	Return a symbolic matrix variable.
:param dtype: numeric type (None means to use theano.config.floatX)
:param name: a name to attach to this variable






	
theano.sandbox.cuda.basic_ops.row(name=None, dtype=None)

	Return a symbolic row variable (ndim=2, broadcastable=[True,False]).
:param dtype: numeric type (None means to use theano.config.floatX)
:param name: a name to attach to this variable






	
theano.sandbox.cuda.basic_ops.scalar(name=None, dtype=None)

	Return a symbolic scalar variable.
:param dtype: numeric type (None means to use theano.config.floatX)
:param name: a name to attach to this variable






	
theano.sandbox.cuda.basic_ops.tensor3(name=None, dtype=None)

	Return a symbolic 3-D variable.
:param dtype: numeric type (None means to use theano.config.floatX)
:param name: a name to attach to this variable






	
theano.sandbox.cuda.basic_ops.tensor4(name=None, dtype=None)

	Return a symbolic 4-D variable.
:param dtype: numeric type (None means to use theano.config.floatX)
:param name: a name to attach to this variable






	
theano.sandbox.cuda.basic_ops.vector(name=None, dtype=None)

	Return a symbolic vector variable.
:param dtype: numeric type (None means to use theano.config.floatX)
:param name: a name to attach to this variable








Blas Op


	
class theano.sandbox.cuda.blas.BaseGpuCorr3dMM(border_mode='valid', subsample=(1, 1, 1), pad=(0, 0, 0))

	Base class for GpuCorr3dMM, GpuCorr3dMM_gradWeights and
GpuCorr3dMM_gradInputs. Cannot be used directly.


	
c_code_helper(bottom, weights, top, direction, sub, height=None, width=None, depth=None)

	This generates the C code for GpuCorrMM (direction=”forward”),
GpuCorrMM_gradWeights (direction=”backprop weights”), and
GpuCorrMM_gradInputs (direction=”backprop inputs”).
Depending on the direction, one of bottom, weights, top will
receive the output, while the other two serve as inputs.





	Parameters:	
	bottom – Variable name of the input images in the forward pass,
or the gradient of the input images in backprop wrt. inputs

	weights – Variable name of the filters in the forward pass,
or the gradient of the filters in backprop wrt. weights

	top – Variable name of the output images / feature maps in the
forward pass, or the gradient of the outputs in the backprop passes

	direction – “forward” to correlate bottom with weights and store
results in top,
“backprop weights” to do a valid convolution of bottom with top
(swapping the first two dimensions) and store results in weights,
and “backprop inputs” to do a full convolution of top with weights
(swapping the first two dimensions) and store results in bottom.

	sub – Dictionary of substitutions useable to help generating the
C code.

	height – If self.subsample[0] != 1, a variable giving the height
of the filters for direction=”backprop weights” or the height of the
input images for direction=”backprop inputs”.
If self.pad == ‘half’, a variable giving the height of the filters
for direction=”backprop weights”.
Ignored otherwise.

	width – If self.subsample[1] != 1, a variable giving the width
of the filters for direction=”backprop weights” or the width of the
input images for direction=”backprop inputs”.
If self.pad == ‘half’, a variable giving the width of the filters
for direction=”backprop weights”.
Ignored otherwise.

	depth – If self.subsample[2] != 1, a variable giving the depth
of the filters for direction=”backprop weights” or the depth of the
input images for direction=”backprop inputs”.
If self.pad == ‘half’, a variable giving the depth of the filters
for direction=”backprop weights”.
Ignored otherwise.














	
flops(inp, outp)

	Useful with the hack in profilemode to print the MFlops










	
class theano.sandbox.cuda.blas.BaseGpuCorrMM(border_mode='valid', subsample=(1, 1), pad=(0, 0))

	Base class for GpuCorrMM, GpuCorrMM_gradWeights and
GpuCorrMM_gradInputs. Cannot be used directly.





	Parameters:	
	border_mode – one of ‘valid’, ‘full’, ‘half’; additionally, the
padding size could be directly specified by an integer or a pair of
integers

	subsample – perform subsampling of the output (default: (1, 1))

	pad – deprecated, now you should always use border_mode










	
c_code_helper(bottom, weights, top, direction, sub, height=None, width=None)

	This generates the C code for GpuCorrMM (direction=”forward”),
GpuCorrMM_gradWeights (direction=”backprop weights”), and
GpuCorrMM_gradInputs (direction=”backprop inputs”).
Depending on the direction, one of bottom, weights, top will
receive the output, while the other two serve as inputs.





	Parameters:	
	bottom – Variable name of the input images in the forward pass,
or the gradient of the input images in backprop wrt. inputs

	weights – Variable name of the filters in the forward pass,
or the gradient of the filters in backprop wrt. weights

	top – Variable name of the output images / feature maps in the
forward pass, or the gradient of the outputs in the backprop passes

	direction – “forward” to correlate bottom with weights and store
results in top,
“backprop weights” to do a valid convolution of bottom with top
(swapping the first two dimensions) and store results in weights,
and “backprop inputs” to do a full convolution of top with weights
(swapping the first two dimensions) and store results in bottom.

	sub – Dictionary of substitutions useable to help generating the
C code.

	height – If self.subsample[0] != 1, a variable giving the height
of the filters for direction=”backprop weights” or the height of
the input images for direction=”backprop inputs”.

If self.border_mode == ‘half’, a variable giving the height of the
filters for direction=”backprop weights”.  Ignored otherwise.



	width – If self.subsample[1] != 1, a variable giving the width
of the filters for direction=”backprop weights” or the width of the
input images for direction=”backprop inputs”.

If self.border_mode == ‘half’, a variable giving the width of the
filters for direction=”backprop weights”.  Ignored otherwise.
















	
flops(inp, outp)

	Useful with the hack in profilemode to print the MFlops










	
class theano.sandbox.cuda.blas.GpuConv(border_mode, subsample=(1, 1), logical_img_hw=None, logical_kern_hw=None, logical_kern_align_top=True, version=-1, direction_hint=None, verbose=0, kshp=None, imshp=None, max_threads_dim0=None, nkern=None, bsize=None, fft_opt=True)

	Implement the batched and stacked 2d convolution on the gpu.


	
flops(inputs, outputs)

	Useful with the hack in profilemode to print the MFlops










	
class theano.sandbox.cuda.blas.GpuCorr3dMM(border_mode='valid', subsample=(1, 1, 1), pad=(0, 0, 0))

	GPU correlation implementation using Matrix Multiplication.





	Warning:	For 700 series Nvidia GPUs of compute capability 3.5 and CUDA 5.0
to 6.0, there is a bug in CUBLAS’ matrix multiplication function that
can make GpuCorrMM or its gradients crash for some input and filter
shapes. So if you have a Tesla K20, Tesla K40, Quadro K6000, GeForce GT
640 (DDR5), GeForce GTX 780 (or Ti), GeForce GTX TITAN (or Black or Z)
and experience a crash, switching to CUDA 6.5 or CUDA 4.2 should fix it.
If this is not possible, changing the input or filter shapes (e.g., the
batchsize or number of filters) may also work around the CUBLAS bug.










	
class theano.sandbox.cuda.blas.GpuCorr3dMM_gradInputs(border_mode='valid', subsample=(1, 1, 1), pad=(0, 0, 0))

	Gradient wrt. inputs for GpuCorr3dMM.





	Note:	You will not want to use this directly, but rely on Theano’s
automatic differentiation or graph optimization to use it as needed.










	
class theano.sandbox.cuda.blas.GpuCorr3dMM_gradWeights(border_mode='valid', subsample=(1, 1, 1), pad=(0, 0, 0))

	Gradient wrt. filters for GpuCorr3dMM.





	Note:	You will not want to use this directly, but rely on Theano’s
automatic differentiation or graph optimization to use it as needed.










	
class theano.sandbox.cuda.blas.GpuCorrMM(border_mode='valid', subsample=(1, 1), pad=(0, 0))

	GPU correlation implementation using Matrix Multiplication.





	Parameters:	
	border_mode – currently supports “valid” only; “full” can be
simulated by setting pad=”full” (at the cost of performance), or
by using GpuCorrMM_gradInputs

	subsample – the subsample operation applied to each output image.
Should be a tuple with 2 elements.
(sv, sh) is equivalent to GpuCorrMM(...)(...)[:,:,::sv, ::sh],
but faster.
Set to (1, 1) to disable subsampling.

	pad – the width of a border of implicit zeros to pad the input
image with. Should be a tuple with 2 elements giving the numbers of
rows and columns to pad on each side, or “half” to set the padding
to (kernel_rows // 2, kernel_columns // 2), or “full” to set the
padding to (kernel_rows - 1, kernel_columns - 1) at runtime.
Set to (0, 0) to disable padding.






	Note:	Currently, the Op requires the inputs, filters and outputs to be
C-contiguous. Use gpu_contiguous on these arguments
if needed.




	Note:	You can either enable the Theano flag optimizer_including=conv_gemm
to automatically replace all convolution operations with GpuCorrMM
or one of its gradients, or you can use it as a replacement for
conv2d, called as
GpuCorrMM(subsample=...)(image, filters). The latter is currently
faster, but note that it computes a correlation – if you need to
compute a convolution, flip the filters as filters[:,:,::-1,::-1].




	Warning:	For 700 series Nvidia GPUs of compute capability 3.5 and CUDA 5.0
to 6.0, there is a bug in CUBLAS’ matrix multiplication function that
can make GpuCorrMM or its gradients crash for some input and filter
shapes. So if you have a Tesla K20, Tesla K40, Quadro K6000, GeForce GT
640 (DDR5), GeForce GTX 780 (or Ti), GeForce GTX TITAN (or Black or Z)
and experience a crash, switching to CUDA 6.5 or CUDA 4.2 should fix it.
If this is not possible, changing the input or filter shapes (e.g., the
batchsize or number of filters) may also work around the CUBLAS bug.












	
class theano.sandbox.cuda.blas.GpuCorrMM_gradInputs(border_mode='valid', subsample=(1, 1), pad=(0, 0))

	Gradient wrt. inputs for GpuCorrMM.





	Note:	You will not want to use this directly, but rely on
Theano’s automatic differentiation or graph optimization to
use it as needed.










	
class theano.sandbox.cuda.blas.GpuCorrMM_gradWeights(border_mode='valid', subsample=(1, 1), pad=(0, 0))

	Gradient wrt. filters for GpuCorrMM.





	Note:	You will not want to use this directly, but rely on
Theano’s automatic differentiation or graph optimization to
use it as needed.










	
class theano.sandbox.cuda.blas.GpuDot22(use_c_code='/usr/bin/g++')

	Implement dot(2d, 2d) on the gpu.






	
class theano.sandbox.cuda.blas.GpuDot22Scalar(use_c_code='/usr/bin/g++')

	Implement dot(2d, 2d) * scalar on the gpu.






	
class theano.sandbox.cuda.blas.GpuDownsampleFactorMax(ds, ignore_border=False)

	Implement downsample with max on the gpu.






	
class theano.sandbox.cuda.blas.GpuDownsampleFactorMaxGrad(ds, ignore_border)

	Implement the grad of downsample with max on the gpu.






	
class theano.sandbox.cuda.blas.GpuDownsampleFactorMaxGradGrad(ds, ignore_border)

	Implement the grad of downsample with max on the gpu.






	
class theano.sandbox.cuda.blas.GpuGemm(inplace)

	implement the gemm on the gpu.






	
class theano.sandbox.cuda.blas.GpuGemv(inplace)

	implement gemv on the gpu.






	
class theano.sandbox.cuda.blas.GpuGer(inplace)

	implement ger on the gpu.








Nnet Op


	
class theano.sandbox.cuda.nnet.GpuCrossentropySoftmax1HotWithBiasDx(**kwargs)

	Implement CrossentropySoftmax1HotWithBiasDx on the gpu.


	
nout = 1

	Gradient wrt x of the CrossentropySoftmax1Hot Op










	
class theano.sandbox.cuda.nnet.GpuCrossentropySoftmaxArgmax1HotWithBias(use_c_code='/usr/bin/g++')

	Implement CrossentropySoftmaxArgmax1HotWithBias on the gpu.






	
class theano.sandbox.cuda.nnet.GpuSoftmax(use_c_code='/usr/bin/g++')

	Implement Softmax on the gpu.






	
class theano.sandbox.cuda.nnet.GpuSoftmaxWithBias(use_c_code='/usr/bin/g++')

	Implement SoftmaxWithBias on the gpu.








Curand Op

Random generator based on the CURAND libraries. It is not inserted automatically.

Define CURAND_RandomStreams - backed by CURAND


	
class theano.sandbox.cuda.rng_curand.CURAND_Base(output_type, seed, destructive)

	Base class for a random number generator implemented in CURAND.

The random number generator itself is an opaque reference managed by
CURAND.  This Op uses a generic-typed shared variable to point to a CObject
that encapsulates this opaque reference.

Each random variable is created with a generator of False.
The actual random number generator is allocated from the seed, on the first
call to allocate random numbers (see c_code).





	Note:	One caveat is that the random number state is simply not serializable.
Consequently, attempts to serialize functions compiled with these
random numbers will fail.






	
as_destructive()

	Return an destructive version of self






	
classmethod new_auto_update(generator, ndim, dtype, size, seed)

	Return a symbolic sample from generator.

cls dictates the random variable (e.g. uniform, normal)










	
class theano.sandbox.cuda.rng_curand.CURAND_Normal(output_type, seed, destructive)

	Op to draw normal numbers using CURAND






	
class theano.sandbox.cuda.rng_curand.CURAND_RandomStreams(seed)

	RandomStreams instance that creates CURAND-based random variables.

One caveat is that generators are not serializable.


	
next_seed()

	Return a unique seed for initializing a random variable.






	
normal(size=None, avg=0.0, std=1.0, ndim=None, dtype='float64')

	Return symbolic tensor of normally-distributed numbers.





	Param:	size: Can be a list of integer or Theano variable(ex: the shape
of other Theano Variable)










	
uniform(size, low=0.0, high=1.0, ndim=None, dtype='float64')

	Return symbolic tensor of uniform numbers.






	
updates()

	List of all (old, new) generator update pairs created by this
instance.










	
class theano.sandbox.cuda.rng_curand.CURAND_Uniform(output_type, seed, destructive)

	Op to draw uniform numbers using CURAND
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sandbox.cuda.var –  The Variables for Cuda-allocated arrays


API


	
class theano.sandbox.cuda.var.CudaNdarraySharedVariable(name, type, value, strict, allow_downcast=None, container=None)

	Shared Variable interface to CUDA-allocated arrays


	
get_value(borrow=False, return_internal_type=False)

	Return the value of this SharedVariable’s internal array.





	Parameters:	
	borrow – permit the return of internal storage, when used in conjunction with
return_internal_type=True

	return_internal_type – True to return the internal cuda_ndarray instance rather than a numpy.ndarray
(Default False)









By default get_value() copies from the GPU to a numpy.ndarray and returns that
host-allocated array.

get_value(False,True) will return a GPU-allocated copy of the original GPU array.

get_value(True,True) will return the original GPU-allocated array without any
copying.






	
set_value(value, borrow=False)

	Assign value to the GPU-allocated array.





	Parameters:	borrow – True permits reusing value itself, False requires that this function
copies value into internal storage.




	Note:	Prior to Theano 0.3.1, set_value did not work in-place on the GPU. This meant that sometimes,
GPU memory for the new value would be allocated before the old memory was released. If you’re
running near the limits of GPU memory, this could cause you to run out of GPU memory.

Beginning with Theano 0.3.1, set_value will work in-place on the GPU, if the following conditions
are met:


	The destination on the GPU must be c_contiguous.

	The source is on the CPU.

	The old value must have the same dtype as the new value (which is a given for now,
since only float32 is supported).

	The old and new value must have the same shape.

	The old value is being completely replaced by the new value (not partially modified,
e.g. by replacing some subtensor of it).

	You change the value of the shared variable via set_value, not via the .value
accessors. You should not use the .value accessors anyway, since they will soon be
deprecated and removed.



It is also worth mentioning that, for efficient transfer to the GPU, Theano will make the new data
c_contiguous. This can require an extra copy of the data on the host.

The inplace on gpu memory work when borrow is either True or False.
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sandbox.cuda.type –  The Type object for Cuda-allocated arrays


API
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sandbox.cuda.dnn – cuDNN

cuDNN [https://developer.nvidia.com/cuDNN] is an NVIDIA library with
functionality used by deep neural network. It provides optimized versions
of some operations like the convolution. cuDNN is not currently
installed with CUDA 6.5. You must download and install it
yourself.

To install it, decompress the downloaded file and make the *.h and
*.so* files available to the compilation environment.
There are at least three possible ways of doing so:


	The easiest is to include them in your CUDA installation. Copy the
*.h files to CUDA_ROOT/include and the *.so* files to
CUDA_ROOT/lib64 (by default, CUDA_ROOT is /usr/local/cuda
on Linux).

	Alternatively, on Linux, you can set the environment variables
LD_LIBRARY_PATH, LIBRARY_PATH and CPATH to the directory
extracted from the download. If needed, separate multiple directories
with : as in the PATH environment variable.

	And as a third way, also on Linux, you can copy the *.h files
to /usr/include and the *.so* files to /lib64.



By default, Theano will detect if it can use cuDNN. If so, it will use
it.  If not, Theano optimizations will not introduce cuDNN ops. So
Theano will still work if the user did not introduce them manually.

To get an error if Theano can not use cuDNN, use this Theano flag:
optimizer_including=cudnn.


Note

CuDNN v2 is now released, if you used any v2 release candidate, we
strongly suggest that you update it to the final version. From now
on, we only support the final release.

CuDNN v2 is much faster than v1. We recommend that everybody
updates to v2.




Note

Normally you should not call GPU Ops directly, but the CPU interface
currently does not allow all options supported by cuDNN ops. So it is
possible that you will need to call them manually.




Note

The documentation of CUDNN R1 and R2 tells that, for the following
2 operations, the reproducibility is not guaranteed:
cudnnConvolutionBackwardFilter and cudnnConvolutionBackwardData.
Those correspond to the gradient wrt the weights and the gradient wrt the
input of the convolution. They are also used sometimes in the forward
pass, when they give a speed up.




Note

There is a problem we do not understand yet when cudnn paths are
used with symbolic links. So avoid using that.




Functions


	
theano.sandbox.cuda.dnn.dnn_conv(img, kerns, border_mode='valid', subsample=(1, 1), conv_mode='conv', direction_hint=None, workmem=None)

	GPU convolution using cuDNN from NVIDIA.

The memory layout to use is ‘bc01’, that is ‘batch’, ‘channel’,
‘first dim’, ‘second dim’ in that order.





	Parameters:	
	img – images to do the convolution over

	kerns – convolution filters

	border_mode – one of ‘valid’, ‘full’; additionally, the padding size
could be directly specified by an integer or a pair of integers

	subsample – perform subsampling of the output (default: (1, 1))

	conv_mode – perform convolution (kernels flipped) or cross-correlation.
One of ‘conv’, ‘cross’. (default: ‘conv’)

	direction_hint – Used by graph optimizers to change algorithm choice.
By default, GpuDnnConv will be used to carry out the convolution.
If border_mode is ‘valid’, subsample is (1,1) and direction_hint is
‘bprop weights’, it will use GpuDnnConvGradW.
If border_mode is ‘full’, subsample is (1,1) and direction_hint is
not ‘forward!’, it will use GpuDnnConvGradI.
This parameter is used internally by graph optimizers and may be
removed at any time without a deprecation period. You have been warned.

	workmem – Specify the amount of working memory allowed.
More memory is usually faster.  One of ‘none’, ‘small’ or
‘large’.  (default is None which takes its value from
config.dnn.conv.workmem)






	Warning:	The cuDNN library only works with GPU that have a compute
capability of 3.0 or higer.  This means that older GPU will not
work with this Op.












	
theano.sandbox.cuda.dnn.dnn_pool(img, ws, stride=(1, 1), mode='max', pad=(0, 0))

	GPU pooling using cuDNN from NVIDIA.

The memory layout to use is ‘bc01’, that is ‘batch’, ‘channel’,
‘first dim’, ‘second dim’ in that order.





	Parameters:	
	img – images to do the pooling over

	ws – subsampling window size

	stride – subsampling stride (default: (1, 1))

	mode – one of ‘max’, ‘average’ (default: ‘max’)

	pad – (padX, padY) padding information.
padX is the size of the left and right borders,
padY is the size of the top and bottom borders.






	Warning:	The cuDNN library only works with GPU that have a compute
capability of 3.0 or higer.  This means that older GPU will not
work with this Op.




	Note:	This Op implements the ignore_border=True of max_pool_2d.














Convolution Ops


	
class theano.sandbox.cuda.dnn.GpuDnnConvDesc(border_mode, subsample=(1, 1), conv_mode='conv')

	This Op builds a convolution descriptor for use in the other
convolution operations.

see the doc of dnn_conv() for a description of the parameters






	
class theano.sandbox.cuda.dnn.GpuDnnConv(workmem=None, inplace=False)

	The forward convolution.





	Parameters:	
	image – 

	kernel – 

	descr – the convolution descriptor










	
static get_out_shape(ishape, kshape, border_mode, subsample)

	This function computes the output shape for a convolution with
the specified parameters.  ishape and kshape can be symbolic
or scalar.










	
class theano.sandbox.cuda.dnn.GpuDnnConvGradW(inplace=False)

	The convolution gradient with respect to the weights.





	Parameters:	
	image – 

	kernel – 

	descr – the convolution descriptor














	
class theano.sandbox.cuda.dnn.GpuDnnConvGradI(inplace=False)

	The convolution gradient with respect to the inputs.





	Parameters:	
	image – 

	kernel – 

	descr – the convolution descriptor
















Pooling Ops


	
class theano.sandbox.cuda.dnn.GpuDnnPoolDesc(ws=(1, 1), stride=(1, 1), mode='max', pad=(0, 0))

	This Op builds a pooling descriptor for use in the other
pooling operations.





	Parameters:	
	ws – windows size

	stride – (dx, dy)

	mode – ‘max’ or ‘average’

	pad – (padX, padY) padding information.
padX is the size of the left and right borders,
padY is the size of the top and bottom borders.














	
class theano.sandbox.cuda.dnn.GpuDnnPool

	Pooling.





	Parameters:	
	img – the image 4d tensor.

	desc – the pooling descriptor.














	
class theano.sandbox.cuda.dnn.GpuDnnPoolGrad

	The pooling gradient.





	Parameters:	
	inp – the input of the pooling.

	out – the output of the pooling in the forward.

	inp_grad – same size as out, but is the corresponding gradient information.

	desc – The pooling descriptor.
















Softmax Ops


	
class theano.sandbox.cuda.dnn.GpuDnnSoftmax(tensor_format, algo, mode)

	Op for the cuDNN Softmax.





	Parameters:	
	tensor_format – Whether the data format is ‘bc01’ or ‘b01c’.

	algo – ‘fast’ or ‘accurate’ indicating whether computations should be
optimized for speed or accuracy respectively.

	mode – ‘instance’ or ‘channel’ indicating whether the softmax should
be computed per image across ‘c01’ or per spatial location ‘01’ per
image across ‘c’.














	
class theano.sandbox.cuda.dnn.GpuDnnSoftmaxGrad(tensor_format, algo, mode)

	Op for the cuDNN SoftmaxGrad.





	Parameters:	
	tensor_format – Whether the data format is ‘bc01’ or ‘b01c’.

	algo – ‘fast’ or ‘accurate’ indicating whether computations should be
optimized for speed or accuracy respectively.

	mode – ‘instance’ or ‘channel’ indicating whether the softmax should
be computed per image across ‘c01’ or per spatial location ‘01’ per
image across ‘c’.
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sandbox.linalg –  Linear Algebra Ops


API


	
class theano.sandbox.linalg.ops.Hint(**kwargs)

	Provide arbitrary information to the optimizer

These ops are removed from the graph during canonicalization
in order to not interfere with other optimizations.
The idea is that prior to canonicalization, one or more Features of the
fgraph should register the information contained in any Hint node, and
transfer that information out of the graph.






	
class theano.sandbox.linalg.ops.HintsFeature

	FunctionGraph Feature to track matrix properties

This is a similar feature to variable ‘tags’. In fact, tags are one way
to provide hints.

This class exists because tags were not documented well, and the
semantics of how tag information should be moved around during
optimizations was never clearly spelled out.

Hints are assumptions about mathematical properties of variables.
If one variable is substituted for another by an optimization,
then it means that the assumptions should be transferred to the
new variable.

Hints are attached to ‘positions in a graph’ rather than to variables
in particular, although Hints are originally attached to a particular
positition in a graph via a variable in that original graph.

Examples of hints are:
- shape information
- matrix properties (e.g. symmetry, psd, banded, diagonal)

Hint information is propagated through the graph similarly to graph
optimizations, except that adding a hint does not change the graph.
Adding a hint is not something that debugmode will check.

#TODO: should a Hint be an object that can actually evaluate its
#      truthfulness?
#      Should the PSD property be an object that can check the
#      PSD-ness of a variable?






	
class theano.sandbox.linalg.ops.HintsOptimizer

	Optimizer that serves to add HintsFeature as an fgraph feature.






	
theano.sandbox.linalg.ops.psd(v)

	Apply a hint that the variable v is positive semi-definite, i.e.
it is a symmetric matrix and [image: x^T A x \ge 0] for any vector x.






	
theano.sandbox.linalg.ops.spectral_radius_bound(X, log2_exponent)

	Returns upper bound on the largest eigenvalue of square symmetrix matrix X.

log2_exponent must be a positive-valued integer. The larger it is, the
slower and tighter the bound.  Values up to 5 should usually suffice.  The
algorithm works by multiplying X by itself this many times.

From V.Pan, 1990. “Estimating the Extremal Eigenvalues of a Symmetric
Matrix”, Computers Math Applic. Vol 20 n. 2 pp 17-22.
Rq: an efficient algorithm, not used here, is defined in this paper.
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sandbox.neighbours –  Neighbours Ops


API

Neighbours was moved into theano.tensor.nnet.neighbours.
This file was created for compatibility.
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sandbox.rng_mrg –  MRG random number generator


API

Implementation of MRG31k3p random number generator for Theano

Generator code in SSJ package (L’Ecuyer & Simard)
http://www.iro.umontreal.ca/~simardr/ssj/indexe.html


	
class theano.sandbox.rng_mrg.DotModulo(use_c_code='/usr/bin/g++')

	Efficient and numerically stable implementation of a dot product followed
by a modulo operation. This performs the same function as matVecModM.

We do this 2 times on 2 triple inputs and concatenating the output






	
class theano.sandbox.rng_mrg.MRG_RandomStreams(seed=12345, use_cuda=None)

	Module component with similar interface to numpy.random (numpy.random.RandomState)


	
get_substream_rstates(n_streams, inc_rstate=True)

	Initialize a matrix in which each row is a MRG stream state,
and they are spaced by 2**72 samples.






	
inc_rstate()

	Update self.rstate to be skipped 2^134 steps forward to the next stream start






	
multinomial(size=None, n=1, pvals=None, ndim=None, dtype='int64', nstreams=None)

	Sample n (currently n needs to be 1) times from a multinomial
distribution defined by probabilities pvals.

Example : pvals = [[.98, .01, .01], [.01, .98, .01]] will
probably result in [[1,0,0],[0,1,0]].


Note

-size and ndim are only there keep the same signature as other
uniform, binomial, normal, etc.
todo : adapt multinomial to take that into account


	-Does not do any value checking on pvals, i.e. there is no

	check that the elements are non-negative, less than 1, or
sum to 1. passing pvals = [[-2., 2.]] will result in
sampling [[0, 0]]










	
normal(size, avg=0.0, std=1.0, ndim=None, dtype=None, nstreams=None)

	



	Parameters:	
	size – Can be a list of integers or Theano variables (ex: the shape
of another Theano Variable)

	dtype – The output data type. If dtype is not specified, it will be
inferred from the dtype of low and high, but will be at
least as precise as floatX.

	nstreams – Number of streams.














	
uniform(size, low=0.0, high=1.0, ndim=None, dtype=None, nstreams=None)

	Sample a tensor of given size whose element from a uniform
distribution between low and high.

If the size argument is ambiguous on the number of dimensions,
ndim may be a plain integer to supplement the missing
information.





	Parameters:	
	low – Lower bound of the interval on which values are sampled.  If
the dtype arg is provided, low will be cast into
dtype.  This bound is excluded.

	high – Higher bound of the interval on which values are sampled.
If the dtype arg is provided, high will be cast into
dtype.  This bound is excluded.

	size – Can be a list of integer or Theano variable (ex: the shape
of other Theano Variable)

	dtype – The output data type. If dtype is not specified, it will be
inferred from the dtype of low and high, but will be at
least as precise as floatX.


















	
theano.sandbox.rng_mrg.guess_n_streams(size, warn=False)

	Return a guess at a good number of streams.





	Parameters:	warn – If True, warn when a guess cannot be made (in which case we
return 60 * 256).










	
theano.sandbox.rng_mrg.multMatVect(v, A, m1, B, m2)

	multiply the first half of v by A with a modulo of m1
and the second half by B with a modulo of m2

Note: The parameters of dot_modulo are passed implicitly because passing
them explicitly takes more time then running the function’s C-code.
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typed_list – Typed List


Note

This has been added in release 0.7.




Note

This works, but is not well integrated with the rest of Theano. If
speed is important, it is probably better to pad to a dense
tensor.



This is a type that represents a list in Theano. All elements must have
the same Theano type. Here is an example:

import theano.typed_list

tl = theano.typed_list.TypedListType(theano.tensor.fvector)()
v = theano.tensor.fvector()
o = theano.typed_list.append(tl, v)
f = theano.function([tl, v], o)
print f([[1, 2, 3], [4, 5]], [2])
#[array([ 1.,  2.,  3.], dtype=float32), array([ 4.,  5.], dtype=float32), array([ 2.], dtype=float32)]





A second example with Scan. Scan doesn’t yet have direct support of
TypedList, so you can only use it as non_sequences (not in sequences or
as outputs):

import theano.typed_list

a = theano.typed_list.TypedListType(theano.tensor.fvector)()
l = theano.typed_list.length(a)
s, _ = theano.scan(fn=lambda i, tl: tl[i].sum(),
                   non_sequences=[a],
                   sequences=[theano.tensor.arange(l, dtype='int64')])

f = theano.function([a], s)
f([[1, 2, 3], [4, 5]])
#array([ 6.,  9.], dtype=float32)






	
class theano.typed_list.basic.TypedListVariable(type, owner=None, index=None, name=None)

	Subclass to add the typed list operators to the basic Variable class.






	
theano.typed_list.basic.append = <theano.typed_list.basic.Append object at 0x7f2d837247d0>

	Append an element at the end of another list.





	Parameters:	
	x – the base typed list.

	y – the element to append to x.














	
theano.typed_list.basic.count = <theano.typed_list.basic.Count object at 0x7f2d83724bd0>

	Count the number of times an element is in the typed list.





	Parameters:	
	x – The typed list to look into.

	elem – The element we want to count in list.
The elements are compared with equals.






	Note:	Python implementation of count doesn’t work when we want to
count an ndarray from a list. This implementation works in that
case.












	
theano.typed_list.basic.extend = <theano.typed_list.basic.Extend object at 0x7f2d83724890>

	Append all elements of a list at the end of another list.





	Parameters:	
	x – The typed list to extend.

	toAppend – The typed list that will be added at the end of x.














	
theano.typed_list.basic.getitem = <theano.typed_list.basic.GetItem object at 0x7f2d83724710>

	Get specified slice of a typed list.





	Parameters:	
	x – typed list.

	index – the index of the value to return from x.














	
theano.typed_list.basic.insert = <theano.typed_list.basic.Insert object at 0x7f2d83724950>

	Insert an element at an index in a typed list.





	Parameters:	
	x – the typed list to modify.

	index – the index where to put the new element in x.

	toInsert – The new element to insert.














	
theano.typed_list.basic.length = <theano.typed_list.basic.Length object at 0x7f2d83724c50>

	Returns the size of a list.





	Parameters:	x – typed list.










	
theano.typed_list.basic.make_list = <theano.typed_list.basic.MakeList object at 0x7f2d83724cd0>

	Build a Python list from those Theano variable.





	Parameters:	a – tuple/list of Theano variable


	Note:	All Theano variable must have the same type.










	
theano.typed_list.basic.remove = <theano.typed_list.basic.Remove object at 0x7f2d83724a10>

	Remove an element from a typed list.





	Parameters:	
	x – the typed list to be changed.

	toRemove – an element to be removed from the typed list.
We only remove the first instance.






	Note:	Python implementation of remove doesn’t work when we want to
remove an ndarray from a list. This implementation works in that
case.












	
theano.typed_list.basic.reverse = <theano.typed_list.basic.Reverse object at 0x7f2d83724ad0>

	Reverse the order of a typed list.





	Parameters:	x – the typed list to be reversed.
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Optimizations


	Theano applies many kinds of graph optimizations, with different objectives:

	
	simplifying and standardizing the form of the expression graph (e.g.  merge, add canonicalization ),

	reducing the maximum memory footprint (e.g. inplace_elemwise),

	increasing execution speed (e.g. constant folding).







The optimizations are listed in roughly chronological order.  The table below
gives a quick summary of the optimizations included in the default modes.
The descriptions are brief and point to further reading.

If you would like to add an additional optimization, refer to
Graph optimization in the guide to extending Theano.


Note

This list is partial.

The print_summary method allows several OpDBs and optimizers to list the executed optimizations.
This makes it possible to have an up-to-date list.

python -c ‘import theano; theano.compile.FAST_RUN.optimizer.print_summary()’

python -c ‘import theano; theano.compile.FAST_COMPILE.optimizer.print_summary()’











	Optimization
	FAST_RUN
	FAST_COMPILE
	Stabilization




	merge
	x
	x
	


	constant folding
	x
	x
	


	shape promotion
	x
	
	


	fill cut
	x
	
	


	inc_subtensor srlz.
	x
	
	


	reshape_chain
	x
	
	


	const. elimination
	x
	
	


	add canonical.
	x
	
	


	mul canonical.
	x
	
	


	dot22
	x
	
	


	sparse_dot
	x
	
	


	sum_scalar_mul
	x
	
	


	neg_neg
	x
	
	


	neg_div_neg
	x
	
	


	add specialize
	x
	
	


	mul specialize
	x
	
	


	pow specialize
	x
	
	


	inplace_setsubtensor
	x
	
	


	gemm
	x
	
	


	inplace_elemwise
	x
	
	


	inplace_random
	x
	
	


	elemwise fusion
	x
	
	


	GPU transfer
	x
	
	


	local_log_softmax
	x
	
	x






	merge

	A simple optimization in which redundant Apply nodes are
combined.  For example, in function([x,y], [(x+y)*2, (x+y)*3]) the merge
optimization will ensure that x and y are only added once.

This optimization is very useful because it frees users to write
highly redundant mathematical code.  Theano will make sure to compute
just what is necessary.

See MergeOptimizer.



	constant folding

	When all the inputs to an expression are constant, then the expression
can be pre-computed at compile-time.

See opt.constant_folding()



	shape promotion

	Theano often knows how to infer the shape of an output from the shape
of its inputs.  Without this optimization, it would otherwise have to
compute things (e.g. log(x)) just to find out the shape of it!

See opt.local_shape_lift_*()



	fill cut

	Fill(a,b) means to make a tensor of the shape of a full of the value b.
Often when fills are used with elementwise operations (e.g. f) they are
un-necessary:
* f(fill(a,b), c) -> f(b, c)
* f(fill(a, b), fill(c, d), e) -> fill(a, fill(c, f(b, d, e)))

See opt.local_fill_cut(), opt.local_fill_sink()



	inc_subtensor serialization

	Incrementing a small subregion of a large tensor can be done quickly
using an inplace operation, but if two increments are being done on
the same large tensor, then only one of them can be done inplace.
This optimization reorders such graphs so that all increments can be
done inplace.

inc_subensor(a,b,idx) + inc_subtensor(a,c,idx) -> inc_subtensor(inc_subtensor(a,b,idx),c,idx)

See local_IncSubtensor_serialize()



	reshape_chain

	This optimizes graphs like reshape(reshape(x, shape1), shape2) -> reshape(x, shape2)

See local_reshape_chain()



	constant elimination

	Many constants indicate special cases, such as pow(x,1) -> x.
Theano recognizes many of these special cases.

See local_mul_specialize(), local_mul_specialize(),:func:local_mul_specialize



	add canonicalization

	Rearrange expressions of additions and subtractions to a canonical
form:


[image: (a+b+c+...) - (z + x + y + ....)]


See Canonizer, local_add_canonizer



	mul canonicalization

	Rearrange expressions of multiplication and division to a canonical
form:


[image: \frac{a * b * c * ...}{z * x * y * ....}]


See Canonizer, local_mul_canonizer



	dot22

	This simple optimization replaces dot(matrix, matrix) with a special
dot22 op that only works for matrix multiplication.  This op is
implemented with a call to GEMM, and sometimes replaced entirely by
the gemm optimization.

See local_dot_to_dot22()



	sparse_dot

	Theano has a sparse matrix multiplication algorithm that is faster in
many cases than scipy’s (for dense matrix output).  This optimization
swaps scipy’s algorithm for ours.

See local_structured_dot()



	sum_scalar_mul

	This optimizes graphs like sum(scalar * tensor) -> scalar * sum(tensor)

See local_sum_mul_by_scalar()



	neg_neg

	Composition of two negatives can be cancelled out.

See local_neg_neg()



	neg_div_neg

	Matching negatives in both the numerator and denominator can both be removed.

See local_neg_div_neg()



	add specialization

	This optimization simplifies expressions involving the addition of
zero.

See local_add_specialize()



	mul specialization

	Several special cases of mul() exist, and this optimization tries to
recognize them. Some examples include:
* mul(x,x) -> x**2
* mul(x,0) -> zeros_like(x)
* mul(x, -1) -> neg(x)

See local_mul_specialize()



	pow specialization

	Several special cases of pow() exist, and this optimization tries to
recognize them. Some examples include:
* pow(x,2) -> x**2
* pow(x,0) -> ones_like(x)
* pow(x, -0.5) -> inv(sqrt(x))

See local_pow_specialize()



	inplace_setsubtensor

	In order to be a pure Op, setsubtensor must copy its entire input, and
modify just the subtensor in question (possibly a single element).  It
is much more efficient to modify that element inplace.

See local_inplace_setsubtensor()



	gemm

	Numerical libraries such as MKL and ATLAS implement the BLAS-level-3
interface, and provide a function GEMM that implements
[image: Z \leftarrow \alpha A \cdot B + \beta Z], for matrices A, B
and Z, and scalars [image: \alpha, \beta].

This optimization tries to rearrange a variety of linear algebra
expressions into one or more instances of this motif, and replace them
each with a single Gemm Op.

See GemmOptimizer



	inplace_elemwise

	When one of the inputs to an elementwise expression has the same type
and shape as the output, and is no longer needed for computation after
the elemwise expression is evaluated, then we can reuse the storage of
the input to store the output.

See insert_inplace_optimizer()



	inplace_random

	Typically when a graph uses random numbers, the RandomState is stored
in a shared variable, used once per call and, updated after each function
call.  In this common case, it makes sense to update the random number generator in-place.

See random_make_inplace()



	elemwise fusion

	This optimization compresses subgraphs of computationally cheap
elementwise operations into a single Op that does the whole job in a
single pass over the inputs (like loop fusion).  This is a win when
transfer from main memory to the CPU (or from graphics memory to the
GPU) is a bottleneck.

See FusionOptimizer



	GPU transfer

	The current strategy for choosing which expressions to evaluate on the
CPU and which to evaluate on the GPU is a greedy one.  There are a
number of Ops *TODO* with GPU implementations and whenever we find
a graph copying data from GPU to CPU in order to evaluate an
expression that could have been evaluated on the GPU, we substitute
the GPU version of that Op for the CPU version.  Likewise if we are
copying the output of a Op with a GPU implementation to the GPU,
then we substitute the GPU version for the CPU version.  In this way, if all goes well,
this procedure will result in a graph with the following form:


	copy non-shared inputs to GPU

	carry out most/all computations on the GPU

	copy output back to CPU



When using a GPU, shared() will default to GPU storage for
‘float32’ ndarray arguments, and these shared variables act as seeds
for the greedy algorithm.

See theano.sandbox.cuda.opt.*().



	local_log_softmax

	This is a stabilization optimization.
It can happen due to rounding errors that the softmax probability of one value gets to 0.
Taking the log of 0 would generate -inf that will probably generate NaN later.
We return a closer answer.
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Extending Theano

This advanced tutorial is for users who want to extend Theano with new Types, new
Operations (Ops), and new graph optimizations.

Along the way, it also introduces many aspects of how Theano works, so it is
also good for you if you are interested in getting more under the hood with
Theano itself.

Before tackling this more advanced presentation, it is highly recommended to read the
introductory Tutorial.

The first few pages will walk you through the definition of a new Type,
double, and a basic arithmetic operations on that Type. We
will start by defining them using a Python implementation and then we will add
a C implementation.



	Writing an Op to work on an ndarray in C
	Writing an Optimization

	Test the optimization





	Overview of the compilation pipeline
	Definition of the computation graph

	Compilation of the computation graph
	Step 1 - Create a FunctionGraph

	Step 2 - Execute main Optimizer

	Step 3 - Execute linker to obtain a thunk

	Step 4 - Wrap the thunk in a pretty package









	Theano vs. C

	Graph Structures
	An explicit example
	Automatic wrapping





	Graph Structures
	Apply
	Op

	Type

	Variable
	Constant













	Graph Structures Extension





	Making the double type
	Type’s contract

	Defining double

	Untangling some concepts

	Final version





	Making arithmetic Ops on double
	Op’s contract

	Optional methods or attributes

	Gradient

	Defining an Op: mul

	Trying out our new Op
	Automatic Constant Wrapping





	Final version





	Views and inplace operations
	Views

	Inplace operations

	Destructive Operations

	Inplace optimization and DebugMode





	Implementing some specific Ops
	Scalar/Elemwise/Reduction Ops

	SciPy Ops

	Sparse Ops
	Sparse Gradient

	Sparse C code

	Sparse Tests





	Random distribution

	OpenMP Ops

	Numba Ops

	Alternate Theano Types





	Implementing double in C
	How does it work?

	What needs to be defined

	Defining the methods

	What the generated C will look like

	Final version

	DeepCopyOp

	ViewOp

	Shape and Shape_i





	Implementing the arithmetic Ops in C
	How does it work?

	What needs to be defined

	Defining the methods

	Final version





	Graph optimization
	Global and local optimizations
	Global optimization

	Local optimization





	One simplification rule
	Global optimization

	Local optimization
	OpSub, OpRemove, PatternSub









	The optimization database (optdb)
	Definition of optdb

	Query

	Examples

	Registering an Optimizer

	Registering a LocalOptimizer

	optdb structure

	Navigator









	Tips
	Reusing outputs

	Don’t define new Ops unless you have to

	Use Theano’s high order Ops when applicable

	Op Checklist





	Unit Testing
	Unittest Primer
	How to Run Unit Tests ?
	theano-nose

	Using unittest module





	Folder Layout





	How to Write a Unittest
	Test Cases and Methods

	Checking for correctness

	Checking for errors

	Test Cases and Theano Modes

	Using Random Values in Test Cases





	Creating an Op UnitTest
	Validating the Gradient





	makeTester and makeBroadcastTester





	Extending Theano: FAQ and Troubleshooting
	I wrote a new Op/Type, and weird stuff is happening...

	I wrote a new optimization, but it’s not getting used...

	I wrote a new optimization, and it changed my results even though I’m pretty sure it is correct.
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Writing an Op to work on an ndarray in C

So suppose you have looked through the library documentation and you don’t see a
function that does what you want.

If you can implement something in terms of existing Ops, you should do that.
Odds are your function that uses existing Theano expressions is short,
has no bugs, and potentially profits from optimizations that have already been
implemented.

However, if you cannot implement an Op in terms of existing Ops, you have to
write a new one.
Don’t worry,
Theano was designed to make it easy to add new Ops, Types, and Optimizations.

This section walks through a non-trivial example Op that does something pretty
weird and unrealistic, that is hard to express with existing Ops.
(Technically, we could use Scan to implement the Op we’re about to describe,
but we ignore that possibility for the sake of example.)

The following code works, but important error-checking has been omitted for
clarity.  For example, when you write C code that assumes memory is contiguous,
you should check the strides and alignment.

class Fibby(theano.Op):
  """
  An arbitrarily generalized Fibbonacci sequence
  """

  def __eq__(self, other):
    return type(self) == type(other)

  def __hash__(self):
    return hash(type(self))

  def make_node(self, x):
    x_ = tensor.as_tensor_variable(x)
    assert x_.ndim == 1
    return theano.Apply(self,
      inputs=[x_],
      outputs=[x_.type()])
    # using x_.type() is dangerous, it copies x's broadcasting behaviour

  def perform(self, node, inputs, output_storage):
    x, = inputs
    y = output_storage[0][0] = x.copy()
    for i in range(2, len(x)):
      y[i] = y[i-1] * y[i-2] + x[i]

  def c_code(self, node, name, inames, onames, sub):
    x, = inames
    y, = onames
    fail = sub['fail']
    return """
      Py_XDECREF(%(y)s);
      %(y)s = (PyArrayObject*)PyArray_FromArray(
                  %(x)s, 0, NPY_ARRAY_ENSURECOPY);
      if (!%(y)s)
          %(fail)s;
      {//New scope needed to make compilation work
          dtype_%(y)s * y = (dtype_%(y)s*)PyArray_DATA(%(y)s);
          dtype_%(x)s * x = (dtype_%(x)s*)PyArray_DATA(%(x)s);
          for (int i = 2; i < PyArray_DIMS(%(x)s)[0]; ++i)
              y[i] = y[i-1]*y[i-2] + x[i];
      }
    """ % locals()

  def c_code_cache_version(self):
    return (1,)

fibby = Fibby()





At a high level, the code fragment declares a class (Fibby) and then
creates one instance of it (fibby).
We often gloss over this distinction, but will be precise here:
fibby (the instance) is an Op, not Fibby (the class which is a subclass of theano.Op).
You can call fibby(tensor.vector()) on a Variable to build an
expression, and in the expression there will be a .op attribute that refers
to fibby.

The first two methods in the Op are relatively boilerplate: __eq__ and __hash__.
When two Ops are equal, Theano will merge their outputs if they are applied to the same inputs.
The base class (Op) says two objects are equal if (and only if)
they are the same object.
Writing these boilerplate definitions ensures that the logic of the equality comparison is always explicit.

It is an essential part of the Op’s contract that if two Ops compare
equal, then they must compute the same result when presented with the same
inputs.  Here, if we allocated another instance of Fibby by typing fibby2
= Fibby() then we would have two Ops that behave identically.

When should the implementation of __eq__ be more complicated?
If Fibby.__init__ had parameters, then we could
have configured fibby2 differently from fibby by passing different
arguments to the constructor. If we had done that, and if that different
configuration made fibby2 compute different results from fibby (for the
same inputs) then we would have to add logic to the __eq__ and __hash__
function so that he two Fibby Ops would not be equal.  The reason why: Theano’s merge
optimization looks for Ops comparing equal and merges them. If two Ops compare
equal but don’t always produce equal results from equal inputs, then you might
see wrong calculation.

The make_node method creates a node to be included in the expression graph.
It runs when we apply our Op (fibby) to Variable (x), as in fibby(tensor.vector()).
When an Op has multiple inputs, their order in the inputs argument to Apply
is important:  Theano will call make_node(*inputs) to copy the graph,
so it is important not to change the semantics of the expression by changing the argument order.

All the inputs and outputs arguments to Apply must be Variables.
A common and easy way to ensure inputs are variables is to run them through
as_tensor_variable.
This function leaves TensorType variables alone, raises an
error for non-TensorType variables, and copies any numpy.ndarray into the
storage for a TensorType Constant.
The make_node method dictates the appropriate Type for all output
variables.

The perform method implements the Op’s mathematical logic in Python.
The inputs (here x) are passed by value,
but a single output is returned indirectly as the first element of
single-element lists.  If fibby had a second output, it would be stored
in output_storage[1][0].
.. jpt: DOn’t understand the following
In some execution modes, the output storage might
contain the return value of a previous call.  That old value can be reused to avoid
memory re-allocation, but it must not influence the semantics of the Op output.

The c_code method accepts variable names as arguments (name, inames,
onames) and returns a C code fragment that computes the expression output.
In case of error, the %(fail)s statement cleans up and returns properly.
The variables %(x)s and %(y)s are set up by the TensorType to be PyArrayObject pointers.
TensorType also set up dtype_%(x)s to be a typdef to the C type for x.

In the first two lines of the C function, we make y point to a new array with
the correct size for the output. This is essentially simulating the line
y = x.copy().

Py_XDECREF(%(y)s);
%(y)s = (PyArrayObject*)PyArray_FromArray(
    %(x)s, 0, NPY_ARRAY_ENSURECOPY);





The first line reduces the reference count of the data that y originally
pointed to. The second line allocates the new data and makes y point to it.

In C code for a theano op, numpy arrays are represented as PyArrayObject C
structs. This is part of the numpy/scipy C API documented at
http://docs.scipy.org/doc/numpy/reference/c-api.types-and-structures.html

TODO: NEEDS MORE EXPLANATION.

There are some important restrictions to remember when implementing an Op.
Unless your Op correctly defines a view_map attribute, the perform and c_code must not
produce outputs whose memory is aliased to any input (technically, if changing the
output could change the input object in some sense, they are aliased).
Unless your Op correctly defines a destroy_map attribute, perform and c_code must
not modify any of the inputs.

TODO: EXPLAIN DESTROYMAP and VIEWMAP BETTER AND GIVE EXAMPLE.

When developing an Op, you should run computations in DebugMode, by using
argument mode='DebugMode' to theano.function. DebugMode is
slow, but it can catch many common violations of the Op contract.

TODO: Like what? How? Talk about Python vs. C too.

DebugMode is no silver bullet though.
For example, if you modify an Op self.* during any of
make_node, perform, or c_code, you are probably doing something
wrong but DebugMode will not detect this.

TODO: jpt: I don’t understand the following sentence.

Ops and Types should usually be considered immutable – you should
definitely not make a change that would have an impact on __eq__,
__hash__, or the mathematical value that would be computed by  perform
or c_code.


Writing an Optimization

fibby of a vector of zeros is another vector of zeros of
the same size.
Theano does not attempt to infer this from the code provided via Fibby.perform or Fibby.c_code.
However, we can write an optimization that makes use of this observation.
This sort of local substitution of special cases is common,
and there is a stage of optimization (specialization) devoted to such optimizations.
The following optimization (fibby_of_zero) tests whether the input is
guaranteed to be all zero, and if so it returns the input itself as a replacement
for the old output.

TODO: talk about OPTIMIZATION STAGES

from theano.tensor.opt import get_scalar_constant_value, NotScalarConstantError

# Remove any fibby(zeros(...))
@theano.tensor.opt.register_specialize
@theano.gof.local_optimizer([fibby])
def fibby_of_zero(node):
  if node.op == fibby:
    x = node.inputs[0]
    try:
      if numpy.all(0 == get_scalar_constant_value(x)):
        return [x]
    except NotScalarConstantError:
      pass





The register_specialize decorator is what activates our optimization, and
tells Theano to use it in the specialization stage.
The local_optimizer decorator builds a class instance around our global
function.  The [fibby] argument is a hint that our optimizer works on nodes
whose .op attribute equals fibby.
The function here (fibby_of_zero) expects an Apply instance as an
argument for parameter node. It tests using
function get_scalar_constant_value, which determines if a
Variable (x) is guaranteed to be a constant, and if so, what constant.




Test the optimization

Here is some code to test that the optimization is applied only when needed.

# Test it does not apply when not needed
x = T.dvector()
f = function([x], fibby(x))
#theano.printing.debugprint(f)

# We call the function to make sure it runs.
# If you run in DebugMode, it will compare the C and Python outputs.
f(numpy.random.rand(5))
topo = f.maker.fgraph.toposort()
assert len(topo) == 1
assert isinstance(topo[0].op, Fibby)

# Test that the optimization gets applied.
f_zero = function([], fibby(T.zeros([5])))
#theano.printing.debugprint(f_zero)

# If you run in DebugMode, it will compare the output before
# and after the optimization.
f_zero()

# Check that the optimization removes the Fibby Op.
# For security, the Theano memory interface ensures that the output
# of the function is always memory not aliased to the input.
# That is why there is a DeepCopyOp op.
topo = f_zero.maker.fgraph.toposort()
assert len(topo) == 1
assert isinstance(topo[0].op, theano.compile.ops.DeepCopyOp)
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Overview of the compilation pipeline

The purpose of this page is to explain each step of defining and
compiling a Theano function.


Definition of the computation graph

By creating Theano Variables using
theano.tensor.lscalar or theano.tensor.dmatrix or by using
Theano functions such as theano.tensor.sin or
theano.tensor.log, the user builds a computation graph. The
structure of that graph and details about its components can be found
in the Graph Structures article.




Compilation of the computation graph

Once the user has built a computation graph, she can use
theano.function in order to make one or more functions that
operate on real data. function takes a list of input Variables as well as a list of output Variables that define a
precise subgraph corresponding to the function(s) we want to define,
compile that subgraph and produce a callable.

Here is an overview of the various steps that are done with the
computation graph in the compilation phase:


Step 1 - Create a FunctionGraph

The subgraph given by the end user is wrapped in a structure called
FunctionGraph. That structure defines several hooks on adding and
removing (pruning) nodes as well as on modifying links between nodes
(for example, modifying an input of an Apply node) (see the
article about fgraph – Graph Container [doc TODO] for more information).

FunctionGraph provides a method to change the input of an Apply node from one
Variable to another and a more high-level method to replace a Variable
with another. This is the structure that Optimizers work on.

Some relevant Features are typically added to the
FunctionGraph, namely to prevent any optimization from operating inplace on
inputs declared as immutable.




Step 2 - Execute main Optimizer

Once the FunctionGraph is made, an optimizer is produced by
the mode passed to function (the Mode basically has two
important fields, linker and optimizer). That optimizer is
applied on the FunctionGraph using its optimize() method.

The optimizer is typically obtained through optdb.




Step 3 - Execute linker to obtain a thunk

Once the computation graph is optimized, the linker is
extracted from the Mode. It is then called with the FunctionGraph as
argument to
produce a thunk, which is a function with no arguments that
returns nothing. Along with the thunk, one list of input containers (a
theano.gof.Container is a sort of object that wraps another and does
type casting) and one list of output containers are produced,
corresponding to the input and output Variables as well as the updates
defined for the inputs when applicable. To perform the computations,
the inputs must be placed in the input containers, the thunk must be
called, and the outputs must be retrieved from the output containers
where the thunk put them.

Typically, the linker calls the toposort method in order to obtain
a linear sequence of operations to perform. How they are linked
together depends on the Linker used. The CLinker produces a single
block of C code for the whole computation, whereas the OpWiseCLinker
produces one thunk for each individual operation and calls them in
sequence.

The linker is where some options take effect: the strict flag of
an input makes the associated input container do type checking. The
borrow flag of an output, if False, adds the output to a
no_recycling list, meaning that when the thunk is called the
output containers will be cleared (if they stay there, as would be the
case if borrow was True, the thunk would be allowed to reuse (or
“recycle”) the storage).


Note

Compiled libraries are stored within a specific compilation directory,
which by default is set to $HOME/.theano/compiledir_xxx, where
xxx identifies the platform (under Windows the default location
is instead $LOCALAPPDATA\Theano\compiledir_xxx). It may be manually set
to a different location either by setting config.compiledir or
config.base_compiledir, either within your Python script or by
using one of the configuration mechanisms described in config.

The compile cache is based upon the C++ code of the graph to be compiled.
So, if you change compilation configuration variables, such as
config.blas.ldflags, you will need to manually remove your compile cache,
using Theano/bin/theano-cache clear

Theano also implements a lock mechanism that prevents
multiple compilations within the same compilation directory (to avoid
crashes with paralell execution of some scripts). This mechanism is
currently enabled by default, but if it causes any problem it may be
disabled using the function
theano.gof.compilelock.set_lock_status(..).






Step 4 - Wrap the thunk in a pretty package

The thunk returned by the linker along with input and output
containers is unwieldy. function hides that complexity away so
that it can be used like a normal function with arguments and return
values.
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Theano vs. C

We describe some of the patterns in Theano, and present their closest
analogue in a statically typed language such as C:







	Theano
	C




	Apply
	function application / function call


	Variable
	local function data / variable


	Shared Variable
	global function data / variable


	Op
	operations carried out in computation / function definition


	Type
	data types





For example:

int d = 0;

int main(int a) {
    int b = 3;
    int c = f(b)
    d = b + c;
    return g(a, c);
}





Based on this code snippet, we can relate f and g to Ops, a,
b and c to Variables, d to Shared Variable, g(a, c),
f(b) and d = b + c (taken as meaning
the action of computing f, g or +``on their respective inputs) to
Applies. Lastly, ``int could be interpreted as the Theano Type of the
Variables a, b, c and d.
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Graph Structures

Theano represents symbolic mathematical computations as graphs. These
graphs are composed of interconnected Apply and Variable
nodes. They are associated to function application and data,
respectively. Operations are represented by Op instances and data
types are represented by Type instances. Here is a piece of code
and a diagram showing the structure built by that piece of code. This
should help you understand how these pieces fit together:



Code

x = dmatrix('x')
y = dmatrix('y')
z = x + y





Diagram

[image: ../_images/apply.png]


Arrows represent references to the Python objects pointed at. The blue
box is an Apply node. Red boxes are Variable nodes. Green
circles are Ops. Purple boxes are Types.

When we create Variables and then Apply
Ops to them to make more Variables, we build a
bi-partite, directed, acyclic graph. Variables point to the Apply nodes
representing the function application producing them via their
owner field. These Apply nodes point in turn to their input and
output Variables via their inputs and outputs fields.
(Apply instances also contain a list of references to their outputs, but
those pointers don’t count in this graph.)

The owner field of both x and y point to None because
they are not the result of another computation. If one of them was the
result of another computation, it’s owner field would point to another
blue box like z does, and so on.

Note that the Apply instance’s outputs points to
z, and z.owner points back to the Apply instance.


An explicit example

In this example we will compare two ways of defining the same graph.
First, a short bit of code will build an expression (graph) the normal way, with most of the
graph construction being done automatically.
Second, we will walk through a longer re-coding of the same thing
without any shortcuts, that will make the graph construction very explicit.

Short example

This is what you would normally type:

# create 3 Variables with owner = None
x = T.matrix('x')
y = T.matrix('y')
z = T.matrix('z')

# create 2 Variables (one for 'e', one intermediate for y*z)
# create 2 Apply instances (one for '+', one for '*')
e = x + y * z





Long example

This is what you would type to build the graph explicitly:

from theano.tensor import add, mul, Apply, Variable, TensorType

# Instantiate a type that represents a matrix of doubles
float64_matrix = TensorType(dtype = 'float64',              # double
                            broadcastable = (False, False)) # matrix

# We make the Variable instances we need.
x = Variable(type = float64_matrix, name = 'x')
y = Variable(type = float64_matrix, name = 'y')
z = Variable(type = float64_matrix, name = 'z')

# This is the Variable that we want to symbolically represents y*z
mul_variable = Variable(type = float64_matrix)
assert mul_variable.owner is None

# Instantiate a symbolic multiplication
node_mul = Apply(op = mul,
                 inputs = [y, z],
                 outputs = [mul_variable])
# Fields 'owner' and 'index' are set by Apply
assert mul_variable.owner is node_mul
# 'index' is the position of mul_variable in mode_mul's outputs
assert mul_variable.index == 0

# This is the Variable that we want to symbolically represents x+(y*z)
add_variable = Variable(type = float64_matrix)
assert add_variable.owner is None

# Instantiate a symbolic addition
node_add = Apply(op = add,
                 inputs = [x, mul_variable],
                 outputs = [add_variable])
# Fields 'owner' and 'index' are set by Apply
assert add_variable.owner is node_add
assert add_variable.index == 0

e = add_variable

# We have access to x, y and z through pointers
assert e.owner.inputs[0] is x
assert e.owner.inputs[1] is mul_variable
assert e.owner.inputs[1].owner.inputs[0] is y
assert e.owner.inputs[1].owner.inputs[1] is z





Note how the call to Apply modifies the owner and index
fields of the Variables passed as outputs to point to
itself and the rank they occupy in the output list. This whole
machinery builds a DAG (Directed Acyclic Graph) representing the
computation, a graph that Theano can compile and optimize.


Automatic wrapping

All nodes in the graph must be instances of Apply or Result, but
<Op subclass>.make_node() typically wraps constants to satisfy those
constraints. For example, the tensor.add()
Op instance is written so that:

e = dscalar('x') + 1





builds the following graph:

node = Apply(op = add,
             inputs = [Variable(type = dscalar, name = 'x'),
                       Constant(type = lscalar, data = 1)],
             outputs = [Variable(type = dscalar)])
e = node.outputs[0]










Graph Structures

The following section outlines each type of structure that may be used
in a Theano-built computation graph. The following structures are
explained: Apply, Constant, Op, Variable and
Type.


Apply

An Apply node is a type of internal node used to represent a
computation graph in Theano. Unlike
Variable nodes, Apply nodes are usually not
manipulated directly by the end user. They may be accessed via
a Variable’s owner field.

An Apply node is typically an instance of the Apply
class. It represents the application
of an Op on one or more inputs, where each input is a
Variable. By convention, each Op is responsible for
knowing how to build an Apply node from a list of
inputs. Therefore, an Apply node may be obtained from an Op
and a list of inputs by calling Op.make_node(*inputs).

Comparing with the Python language, an Apply node is
Theano’s version of a function call whereas an Op is
Theano’s version of a function definition.

An Apply instance has three important fields:


	op

	An Op that determines the function/transformation being
applied here.

	inputs

	A list of Variables that represent the arguments of
the function.

	outputs

	A list of Variables that represent the return values
of the function.



An Apply instance can be created by calling gof.Apply(op, inputs, outputs).


Op

An Op in Theano defines a certain computation on some types of
inputs, producing some types of outputs. It is equivalent to a
function definition in most programming languages. From a list of
input Variables and an Op, you can build an Apply
node representing the application of the Op to the inputs.

It is important to understand the distinction between an Op (the
definition of a function) and an Apply node (the application of a
function). If you were to interpret the Python language using Theano’s
structures, code going like def f(x): ... would produce an Op for
f whereas code like a = f(x) or g(f(4), 5) would produce an
Apply node involving the f Op.




Type

A Type in Theano represents a set of constraints on potential
data objects. These constraints allow Theano to tailor C code to handle
them and to statically optimize the computation graph. For instance,
the irow type in the theano.tensor package
gives the following constraints on the data the Variables of type irow
may contain:


	Must be an instance of numpy.ndarray: isinstance(x, numpy.ndarray)

	Must be an array of 32-bit integers: str(x.dtype) == 'int32'

	Must have a shape of 1xN: len(x.shape) == 2 and x.shape[0] == 1



Knowing these restrictions, Theano may generate C code for addition, etc.
that declares the right data types and that contains the right number
of loops over the dimensions.

Note that a Theano Type is not equivalent to a Python type or
class. Indeed, in Theano, irow and dmatrix both use numpy.ndarray as the underlying type
for doing computations and storing data, yet they are different Theano
Types. Indeed, the constraints set by dmatrix are:


	Must be an instance of numpy.ndarray: isinstance(x, numpy.ndarray)

	Must be an array of 64-bit floating point numbers: str(x.dtype) == 'float64'

	Must have a shape of MxN, no restriction on M or N: len(x.shape) == 2



These restrictions are different from those of irow which are listed above.

There are cases in which a Type can fully correspond to a Python type,
such as the double Type we will define here, which corresponds to
Python’s float. But, it’s good to know that this is not necessarily
the case. Unless specified otherwise, when we say “Type” we mean a
Theano Type.




Variable

A Variable is the main data structure you work with when using
Theano. The symbolic inputs that you operate on are Variables and what
you get from applying various Ops to these inputs are also
Variables. For example, when I type

>>> x = theano.tensor.ivector()
>>> y = -x





x and y are both Variables, i.e. instances of the Variable class. The Type of both x and
y is theano.tensor.ivector.

Unlike x, y is a Variable produced by a computation (in this
case, it is the negation of x). y is the Variable corresponding to
the output of the computation, while x is the Variable
corresponding to its input. The computation itself is represented by
another type of node, an Apply node, and may be accessed
through y.owner.

More specifically, a Variable is a basic structure in Theano that
represents a datum at a certain point in computation. It is typically
an instance of the class Variable or
one of its subclasses.

A Variable r contains four important fields:


	type

	a Type defining the kind of value this Variable can hold in
computation.

	owner

	this is either None or an Apply node of which the Variable is
an output.

	index

	the integer such that owner.outputs[index] is r (ignored if
owner is None)

	name

	a string to use in pretty-printing and debugging.



Variable has one special subclass: Constant.


Constant

A Constant is a Variable with one extra field, data (only
settable once). When used in a computation graph as the input of an
Op application, it is assumed that said input
will always take the value contained in the constant’s data
field. Furthermore, it is assumed that the Op will not under
any circumstances modify the input. This means that a constant is
eligible to participate in numerous optimizations: constant inlining
in C code, constant folding, etc.

A constant does not need to be specified in a function‘s list
of inputs.  In fact, doing so will raise an exception.










Graph Structures Extension

When we start the compilation of a Theano function, we compute some
extra information. This section describes a portion of the information
that is made available. Not everything is described, so email
theano-dev if you need something that is missing.

The graph gets cloned at the start of compilation, so modifications done
during compilation won’t affect the user graph.

Each variable receives a new field called clients. It is a list with
references to every place in the graph where this variable is used. If
its length is 0, it means the variable isn’t used. Each place where it
is used is described by a tuple of 2 elements. There are two types of
pairs:


	The first element is an Apply node.

	The first element is the string “output”. It means the
function outputs this variable.



In both types of pairs, the second element of the tuple is an index,
such that: var.clients[*][0].inputs[index] or
fgraph.outputs[index] is that variable.

import theano
v = theano.tensor.vector()
f = theano.function([v], (v+1).sum())
theano.printing.debugprint(f)
# Sorted list of all nodes in the compiled graph.
topo = f.maker.fgraph.toposort()
topo[0].outputs[0].clients
# [(Sum(Elemwise{add,no_inplace}.0), 0)]
topo[1].outputs[0].clients
# [('output', 0)]

# An internal variable
var = topo[0].outputs[0]
client = var.clients[0]
client
# (Sum(Elemwise{add,no_inplace}.0), 0)
type(clients[0][0])
# <class 'theano.gof.graph.Apply'>
assert client[0].inputs[client[1]] is var

# An output of the graph
var = topo[1].outputs[0]
client = var.clients[0]
client
# ('output', 0)
assert f.maker.fgraph.outputs[client[1]] is var
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Making the double type


Type’s contract

In Theano’s framework, a Type (gof.type.Type)
is any object which defines the following
methods. To obtain the default methods described below, the Type should
be an instance of Type or should be an instance of a
subclass of Type. If you will write all methods yourself,
you need not use an instance of Type.

Methods with default arguments must be defined with the same signature,
i.e.  the same default argument names and values. If you wish to add
extra arguments to any of these methods, these extra arguments must have
default values.


	
class PureType

	
	
filter(value, strict=False, allow_downcast=None)

	This casts a value to match the Type and returns the
cast value. If value is incompatible with the Type,
the method must raise an exception. If strict is True, filter must return a
reference to value (i.e. casting prohibited).
If strict is False, then casting may happen, but downcasting should
only be used in two situations:


	if allow_downcast is True

	if allow_downcast is None and the default behavior for this
type allows downcasting for the given value (this behavior is
type-dependent, you may decide what your own type does by default)



We need to define filter with three arguments. The second argument
must be called strict (Theano often calls it by keyword) and must
have a default value of False. The third argument must be called
allow_downcast and must have a default value of None.






	
filter_inplace(value, storage, strict=False, allow_downcast=None)

	If filter_inplace is defined, it will be called instead of
filter() This is to allow reusing the old allocated memory. As
of this writing this is used only when we transfer new data to a
shared variable on the gpu.

storage will be the old value. i.e. The old numpy array,
CudaNdarray, ...






	
is_valid_value(value)

	Returns True iff the value is compatible with the Type. If
filter(value, strict = True) does not raise an exception, the
value is compatible with the Type.

Default: True iff filter(value, strict=True) does not raise
an exception.






	
values_eq(a, b)

	Returns True iff a and b are equal.

Default: a == b






	
values_eq_approx(a, b)

	Returns True iff a and b are approximately equal, for a
definition of “approximately” which varies from Type to Type.

Default: values_eq(a, b)






	
make_variable(name=None)

	Makes a Variable of this Type with the specified name, if
name is not None. If name is None, then the Variable does
not have a name. The Variable will have its type field set to
the Type object.

Default: there is a generic definition of this in Type. The
Variable’s type will be the object that defines this method (in
other words, self).






	
__call__(name=None)

	Syntactic shortcut to make_variable.

Default: make_variable






	
__eq__(other)

	Used to compare Type instances themselves

Default: object.__eq__






	
__hash__()

	Types should not be mutable, so it should be OK to define a hash
function.  Typically this function should hash all of the terms
involved in __eq__.

Default: id(self)






	
get_shape_info(obj)

	Optional. Only needed to profile the memory of this Type of object.

Return the information needed to compute the memory size of obj.

The memory size is only the data, so this excludes the container.
For an ndarray, this is the data, but not the ndarray object and
other data structures such as shape and strides.

get_shape_info() and get_size() work in tandem for the memory profiler.

get_shape_info() is called during the execution of the function.
So it is better that it is not too slow.

get_size() will be called on the output of this function
when printing the memory profile.





	Parameters:	obj – The object that this Type represents during execution


	Returns:	Python object that self.get_size() understands










	
get_size(shape_info)

	Number of bytes taken by the object represented by shape_info.

Optional. Only needed to profile the memory of this Type of object.





	Parameters:	shape_info – the output of the call to get_shape_info()


	Returns:	the number of bytes taken by the object described by
shape_info.










	
clone(dtype=None, broadcastable=None)

	Optional, for TensorType-alikes.

Return a copy of the type with a possibly changed value for
dtype and broadcastable (if they aren’t None).





	Parameters:	
	dtype – New dtype for the copy.

	broadcastable – New broadcastable tuple for the copy.














	
may_share_memory(a, b)

	Optional to run, but mandatory for DebugMode. Return True if the Python
objects a and b could share memory. Return False
otherwise. It is used to debug when Ops did not declare memory
aliasing between variables. Can be a static method.
It is highly recommended to use and is mandatory for Type in Theano
as our buildbot runs in DebugMode.









For each method, the default is what Type defines
for you. So, if you create an instance of Type or an
instance of a subclass of Type, you
must define filter. You might want to override values_eq_approx,
as well as values_eq. The other defaults generally need not be
overridden.

For more details you can go see the documentation for Type.




Defining double

We are going to base Type double on Python’s float. We
must define filter and shall override values_eq_approx.

filter

# Note that we shadow Python's function ``filter`` with this
# definition.
def filter(x, strict=False, allow_downcast=None):
    if strict:
        if isinstance(x, float):
            return x
        else:
            raise TypeError('Expected a float!')
    elif allow_downcast:
        return float(x)
    else:   # Covers both the False and None cases.
        x_float = float(x)
        if x_float == x:
            return x_float
        else:
             raise TypeError('The double type cannot accurately represent '
                             'value %s (of type %s): you must explicitly '
                             'allow downcasting if you want to do this.'
                             % (x, type(x)))





If strict is True we need to return x. If strict is True and x is not a
float (for example, x could easily be an int) then it is
incompatible with our Type and we must raise an exception.

If strict is False then we are allowed to cast x to a float,
so if x is an int it we will return an equivalent float.
However if this cast triggers a precision loss (x != float(x)) and
allow_downcast is not True, then we also raise an exception.
Note that here we decided that the default behavior of our type
(when allow_downcast is set to None) would be the same as
when allow_downcast is False, i.e. no precision loss is allowed.

values_eq_approx

def values_eq_approx(x, y, tolerance=1e-4):
    return abs(x - y) / (abs(x) + abs(y)) < tolerance





The second method we define is values_eq_approx. This method
allows approximate comparison between two values respecting our Type’s
constraints. It might happen that an optimization changes the computation
graph in such a way that it produces slightly different variables, for
example because of numerical instability like rounding errors at the
end of the mantissa. For instance, a + a + a + a + a + a might not
actually produce the exact same output as 6 * a (try with a=0.1),
but with values_eq_approx we do not necessarily mind.

We added an extra tolerance argument here. Since this argument is
not part of the API, it must have a default value, which we
chose to be 1e-4.


Note

values_eq is never actually used by Theano, but it might be used
internally in the future. Equality testing in
DebugMode is done using values_eq_approx.



Putting them together

What we want is an object that respects the aforementioned
contract. Recall that Type defines default implementations for all
required methods of the interface, except filter. One way to make
the Type is to instantiate a plain Type and set the needed fields:

from theano import gof

double = gof.Type()
double.filter = filter
double.values_eq_approx = values_eq_approx





Another way to make this Type is to make a subclass of gof.Type
and define filter and values_eq_approx in the subclass:

from theano import gof

class Double(gof.Type):

    def filter(self, x, strict=False, allow_downcast=None):
        # See code above.
        ...

    def values_eq_approx(self, x, y, tolerance=1e-4):
        # See code above.
        ...

double = Double()





double is then an instance of Type Double, which in turn is a
subclass of Type.

There is a small issue with defining double this way. All
instances of Double are technically the same Type. However, different
Double Type instances do not compare the same:

>>> double1 = Double()
>>> double2 = Double()
>>> double1 == double2
False





Theano compares Types using == to see if they are the same.
This happens in DebugMode.  Also, Ops can (and should) ensure that their inputs
have the expected Type by checking something like if x.type == lvector.

There are several ways to make sure that equality testing works properly:



	Define Double.__eq__ so that instances of type Double
are equal. For example:

def __eq__(self, other):
    return type(self) is Double and type(other) is Double







	Override Double.__new__ to always return the same instance.



	Hide the Double class and only advertise a single instance of it.








Here we will prefer the final option, because it is the simplest.
Ops in the Theano code often define the __eq__ method though.




Untangling some concepts

Initially, confusion is common on what an instance of Type is versus
a subclass of Type or an instance of Variable. Some of this confusion is
syntactic. A Type is any object which has fields corresponding to the
functions defined above. The Type class provides sensible defaults for
all of them except filter, so when defining new Types it is natural
to subclass Type. Therefore, we often end up with Type subclasses and
it is can be confusing what these represent semantically. Here is an
attempt to clear up the confusion:


	An instance of Type (or an instance of a subclass)
is a set of constraints on real data. It is
akin to a primitive type or class in C. It is a static
annotation.

	An instance of Variable symbolizes data nodes in a data flow
graph. If you were to parse the C expression int x;, int
would be a Type instance and x would be a Variable instance of
that Type instance. If you were to parse the C expression c = a +
b;, a, b and c would all be Variable instances.

	A subclass of Type is a way of implementing
a set of Type instances that share
structural similarities. In the double example that we are doing,
there is actually only one Type in that set, therefore the subclass
does not represent anything that one of its instances does not. In this
case it is a singleton, a set with one element. However, the
TensorType
class in Theano (which is a subclass of Type)
represents a set of types of tensors
parametrized by their data type or number of dimensions. We could say
that subclassing Type builds a hierarchy of Types which is based upon
structural similarity rather than compatibility.






Final version

from theano import gof

class Double(gof.Type):

    def filter(self, x, strict=False, allow_downcast=None):
        if strict:
            if isinstance(x, float):
                return x
            else:
                raise TypeError('Expected a float!')
        elif allow_downcast:
            return float(x)
        else:   # Covers both the False and None cases.
            x_float = float(x)
            if x_float == x:
                return x_float
            else:
                 raise TypeError('The double type cannot accurately represent '
                                 'value %s (of type %s): you must explicitly '
                                 'allow downcasting if you want to do this.'
                                 % (x, type(x)))

    def values_eq_approx(self, x, y, tolerance=1e-4):
        return abs(x - y) / (abs(x) + abs(y)) < tolerance

    def __str__(self):
        return "double"

double = Double()





We add one utility function, __str__. That way, when we print
double, it will print out something intelligible.
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Making arithmetic Ops on double

Now that we have a double type, we have yet to use it to perform
computations. We’ll start by defining multiplication.


Op’s contract

An Op is any object which inherits from gof.Op.  It has to
define the following methods.


	
make_node(*inputs)

	This method is responsible for creating output Variables of a
suitable symbolic Type to serve as the outputs of this Op’s
application.  The Variables found in *inputs must be operated on
using Theano’s symbolic language to compute the symbolic output
Variables. This method should put these outputs into an Apply
instance, and return the Apply instance.

This method creates an Apply node representing the application of
the Op on the inputs provided. If the Op cannot be applied to these
inputs, it must raise an appropriate exception.

The inputs of the Apply instance returned by this call must be
ordered correctly: a subsequent self.make_node(*apply.inputs)
must produce something equivalent to the first apply.






	
perform(node, inputs, output_storage)

	This method computes the function associated to this Op. node is
an Apply node created by the Op’s make_node method. inputs
is a list of references to data to operate on using non-symbolic
statements, (i.e., statements in Python, Numpy). output_storage
is a list of storage cells where the variables of the computation
must be put.

More specifically:



	node: This is a reference to an Apply node which was previously
obtained via the Op‘s make_node method. It is typically not
used in simple Ops, but it contains symbolic information that
could be required for complex Ops.



	inputs: This is a list of data from which the values stored in output_storage
are to be computed using non-symbolic language.



	output_storage: This is a list of storage cells where the output is to be stored.
A storage cell is a one-element list. It is forbidden to change
the length of the list(s) contained in output_storage.
There is one storage cell for each output of the Op.

The data put in output_storage must match the type of the
symbolic output. This is a situation where the node argument
can come in handy.

A function Mode may allow output_storage elements to persist
between evaluations, or it may reset output_storage cells to
hold a value of None.  It can also pre-allocate some memory
for the Op to use.  This feature can allow perform to reuse
memory between calls, for example. If there is something
preallocated in the output_storage, it will be of the good
dtype, but can have the wrong shape and have any stride pattern.








This method must be determined by the inputs. That is to say, if
it is evaluated once on inputs A and returned B, then if ever
inputs C, equal to A, are presented again, then outputs equal to
B must be returned again.

You must be careful about aliasing outputs to inputs, and making
modifications to any of the inputs. See Views and inplace
operations before writing a perform
implementation that does either of these things.





Instead (or in addition to) perform() You can also provide a
C implementation of For more details, refer to the
documentation for Op.


	
__eq__(other)

	other is also an Op.

Returning True here is a promise to the optimization system
that the other Op will produce exactly the same graph effects
(from perform) as this one, given identical inputs. This means it
will produce the same output values, it will destroy the same
inputs (same destroy_map), and will alias outputs to the same
inputs (same view_map). For more details, see
Views and inplace operations.



Note

If you set __props__, this will be automatically generated.











	
__hash__()

	If two Op instances compare equal, then they must return the
same hash value.

Equally important, this hash value must not change during the
lifetime of self.  Op instances should be immutable in this
sense.



Note

If you set __props__, this will be automatically generated.













Optional methods or attributes


	
__props__

	Default: Undefined

Must be a tuple.  Lists the name of the attributes which influence
the computation performed.  This will also enable the automatic
generation of appropriate __eq__, __hash__ and __str__ methods.
Should be set to () if you have no attributes that are relevant to
the computation to generate the methods.


New in version 0.7.








	
default_output

	Default: None

If this member variable is an integer, then the default
implementation of __call__ will return
node.outputs[self.default_output], where node was returned
by make_node.  Otherwise, the entire list of outputs will be
returned, unless it is of length 1, where the single element will be
returned by itself.






	
make_thunk(node, storage_map, compute_map, no_recycling)

	This function must return a thunk, that is a zero-arguments
function that encapsulates the computation to be performed by this
op on the arguments of the node.





	Parameters:	
	node – Apply instance
The node for which a thunk is requested.

	storage_map – dict of lists
This maps variables to a one-element lists holding the variable’s
current value. The one-element list acts as pointer to the value
and allows sharing that “pointer” with other nodes and instances.

	compute_map – dict of lists
This maps variables to one-element lists holding booleans.  If
the value is 0 then the variable has not been computed and the
value should not be considered valid.  If the value is 1 the
variable has been computed and the value is valid.  If the value
is 2 the variable has been garbage-collected and is no longer
valid, but shouldn’t be required anymore for this call.

	no_recycling – WRITEME
WRITEME









The returned function must ensure that is sets the computed
variables as computed in the compute_map.

Defining this function removes the requirement for perform()
or C code, as you will define the thunk for the computation
yourself.






	
__call__(*inputs, **kwargs)

	By default this is a convenience function which calls
make_node() with the supplied arguments and returns the
result indexed by default_output.  This can be overridden by
subclasses to do anything else, but must return either a theano
Variable or a list of Variables.

If you feel the need to override __call__ to change the graph
based on the arguments, you should instead create a function that
will use your Op and build the graphs that you want and call that
instead of the Op instance directly.






	
infer_shape(node, shapes)

	This function is needed for shape optimization. shapes is a
list with one tuple for each input of the Apply node (which corresponds
to the inputs of the op).  Each tuple contains as many elements as the
number of dimensions of the corresponding input. The value of each element
is the shape (number of items) along the corresponding dimension of that
specific input.

While this might sound complicated, it is nothing more than the shape
of each input as symbolic variables (one per dimension).

The function should return a list with one tuple for each output.
Each tuple should contain the corresponding output’s computed shape.

Implementing this method will allow Theano to compute the output’s
shape without computing the output itself, potentially sparing you
a costly recomputation.






	
flops(inputs, outputs)

	It is only used to have more information printed by the memory
profiler.  It makes it print the mega flops and giga flops per
second for each apply node. It takes as inputs two lists: one for the
inputs and one for the outputs. They contain tuples that are the
shapes of the corresponding inputs/outputs.






	
__str__()

	This allows you to specify a more informative string representation of your
Op. If an Op has parameters, it is highly recommended to have the
__str__ method include the name of the op and the Op’s parameters’
values.


Note

If you set __props__, this will be automatically generated.
You can still overide it for custom output.








	
do_constant_folding(node)

	Default: Return True

By default when optimizations are enabled, we remove during
function compilation Apply nodes whose inputs are all constants.
We replace the Apply node with a Theano constant variable.
This way, the Apply node is not executed at each function
call. If you want to force the execution of an op during the
function call, make do_constant_folding return False.

As done in the Alloc op, you can return False only in some cases by
analyzing the graph from the node parameter.





If you want your op to work with gradient.grad() you also need to
implement the functions described below.




Gradient

These are the function required to work with gradient.grad().


	
grad(inputs, output_gradients)

	If the Op being defined is differentiable, its gradient may be
specified symbolically in this method. Both inputs and
output_gradients are lists of symbolic Theano Variables and
those must be operated on using Theano’s symbolic language. The grad
method must return a list containing one Variable for each
input. Each returned Variable represents the gradient with respect
to that input computed based on the symbolic gradients with respect
to each output.

If the output is not differentiable with respect to an input then
this method should be defined to return a variable of type NullType
for that input. Likewise, if you have not implemented the grad
computation for some input, you may return a variable of type
NullType for that input. theano.gradient contains convenience
methods that can construct the variable for you:
theano.gradient.grad_undefined() and
theano.gradient.grad_not_implemented(), respectively.

If an element of output_gradient is of type
theano.gradient.DisconnectedType, it means that the cost is not a
function of this output. If any of the op’s inputs participate in
the computation of only disconnected outputs, then Op.grad should
return DisconnectedType variables for those inputs.

If the grad method is not defined, then Theano assumes it has been
forgotten.  Symbolic differentiation will fail on a graph that
includes this Op.

It must be understood that the Op’s grad method is not meant to
return the gradient of the Op’s output. theano.tensor.grad computes
gradients; Op.grad is a helper function that computes terms that
appear in gradients.

If an Op has a single vector-valued output y and a single
vector-valued input x, then the grad method will be passed x and a
second vector z. Define J to be the Jacobian of y with respect to
x. The Op’s grad method should return dot(J.T,z). When
theano.tensor.grad calls the grad method, it will set z to be the
gradient of the cost C with respect to y. If this op is the only op
that acts on x, then dot(J.T,z) is the gradient of C with respect to
x.  If there are other ops that act on x, theano.tensor.grad will
have to add up the terms of x’s gradient contributed by the other
op’s grad method.

In practice, an op’s input and output are rarely implemented as
single vectors.  Even if an op’s output consists of a list
containing a scalar, a sparse matrix, and a 4D tensor, you can think
of these objects as being formed by rearranging a vector. Likewise
for the input. In this view, the values computed by the grad method
still represent a Jacobian-vector product.

In practice, it is probably not a good idea to explicitly construct
the Jacobian, which might be very large and very sparse. However,
the returned value should be equal to the Jacobian-vector product.

So long as you implement this product correctly, you need not
understand what theano.tensor.grad is doing, but for the curious the
mathematical justification is as follows:

In essence, the grad method must simply implement through symbolic
Variables and operations the chain rule of differential
calculus. The chain rule is the mathematical procedure that allows
one to calculate the total derivative [image: \frac{d C}{d x}] of the
final scalar symbolic Variable C with respect to a primitive
symbolic Variable x found in the list inputs.  The grad method
does this using output_gradients which provides the total
derivative [image: \frac{d C}{d f}] of C with respect to a symbolic
Variable that is returned by the Op (this is provided in
output_gradients), as well as the knowledge of the total
derivative [image: \frac{d f}{d x}] of the latter with respect to the
primitive Variable (this has to be computed).

In mathematics, the total derivative of a scalar variable (C) with
respect to a vector of scalar variables (x), i.e. the gradient, is
customarily represented as the row vector of the partial
derivatives, whereas the total derivative of a vector of scalar
variables (f) with respect to another (x), is customarily
represented by the matrix of the partial derivatives, i.e.the
jacobian matrix. In this convenient setting, the chain rule
instructs that the gradient of the final scalar variable C with
respect to the primitive scalar variables in x through those in f is
simply given by the matrix product: [image: \frac{d C}{d x} = \frac{d C}{d f} * \frac{d f}{d x}].

Here, the chain rule must be implemented in a similar but slightly
more complex setting: Theano provides in the list
output_gradients one gradient for each of the Variables returned
by the Op. Where f is one such particular Variable, the
corresponding gradient found in output_gradients and
representing [image: \frac{d C}{d f}] is provided with a shape
similar to f and thus not necessarily as a row vector of scalars.
Furthermore, for each Variable x of the Op’s list of input variables
inputs, the returned gradient representing [image: \frac{d C}{d x}] must have a shape similar to that of Variable x.

If the output list of the op is [image: [f_1, ... f_n]], then the
list output_gradients is [image: [grad_{f_1}(C), grad_{f_2}(C), ... , grad_{f_n}(C)]].  If inputs consists of the list
[image: [x_1, ..., x_m]], then Op.grad should return the list
[image: [grad_{x_1}(C), grad_{x_2}(C), ..., grad_{x_m}(C)]], where
[image: (grad_{y}(Z))_i = \frac{\partial Z}{\partial y_i}] (and
[image: i] can stand for multiple dimensions).

In other words, grad() does not return [image: \frac{d f_i}{d x_j}], but instead the appropriate dot product specified by the
chain rule: [image: \frac{d C}{d x_j} = \frac{d C}{d f_i} \cdot \frac{d f_i}{d x_j}].  Both the partial differentiation and the
multiplication have to be performed by grad().

Theano currently imposes the following constraints on the values
returned by the grad method:


	They must be Variable instances.

	When they are types that have dtypes, they must never have an integer dtype.



The output gradients passed to Op.grad will also obey these constraints.

Integers are a tricky subject. Integers are the main reason for
having DisconnectedType, NullType or zero gradient. When you have an
integer as an argument to your grad method, recall the definition of
a derivative to help you decide what value to return:

[image: \frac{d f}{d x} = \lim_{\epsilon \rightarrow 0} (f(x+\epsilon)-f(x))/\epsilon].

Suppose your function f has an integer-valued output. For most
functions you’re likely to implement in theano, this means your
gradient should be zero, because f(x+epsilon) = f(x) for almost all
x. (The only other option is that the gradient could be undefined,
if your function is discontinuous everywhere, like the rational
indicator function)

Suppose your function f has an integer-valued input. This is a
little trickier, because you need to think about what you mean
mathematically when you make a variable integer-valued in
theano. Most of the time in machine learning we mean “f is a
function of a real-valued x, but we are only going to pass in
integer-values of x”. In this case, f(x+epsilon) exists, so the
gradient through f should be the same whether x is an integer or a
floating point variable. Sometimes what we mean is “f is a function
of an integer-valued x, and f is only defined where x is an
integer.” Since f(x+epsilon) doesn’t exist, the gradient is
undefined.  Finally, many times in theano, integer valued inputs
don’t actually affect the elements of the output, only its shape.

If your function f has both an integer-valued input and an
integer-valued output, then both rules have to be combined:


	If f is defined at (x+epsilon), then the input gradient is
defined. Since f(x+epsilon) would be equal to f(x) almost
everywhere, the gradient should be 0 (first rule).

	If f is only defined where x is an integer, then the gradient
is undefined, regardless of what the gradient with respect to the
output is.



Examples:


	
	f(x,y) = dot product between x and y. x and y are integers.

	Since the output is also an integer, f is a step function.
Its gradient is zero almost everywhere, so Op.grad should return
zeros in the shape of x and y.







	
	f(x,y) = dot product between x and y. x is floating point and y is an integer.

	In this case the output is floating point. It doesn’t matter
that y is an integer.  We consider f to still be defined at
f(x,y+epsilon). The gradient is exactly the same as if y were
floating point.







	
	f(x,y) = argmax of x along axis y.

	The gradient with respect to y is undefined, because f(x,y) is
not defined for floating point y. How could you take an argmax
along a fraActional axis?  The gradient with respect to x is
0, because f(x+epsilon, y) = f(x) almost everywhere.







	
	f(x,y) = a vector with y elements, each of which taking on the value x

	The grad method should return DisconnectedType()() for y,
because the elements of f don’t depend on y. Only the shape of
f depends on y. You probably also want to implement a
connection_pattern method to encode this.







	
	f(x) = int(x) converts float x into an int. g(y) = float(y) converts an integer y into a float.

	If the final cost C = 0.5 * g(y) = 0.5 g(f(x)), then the
gradient with respect to y will be 0.5, even if y is an
integer. However, the gradient with respect to x will be 0,
because the output of f is integer-valued.














	
connection_pattern(node):

	Sometimes needed for proper operation of gradient.grad().

Returns a list of list of bools.

Op.connection_pattern[input_idx][output_idx] is true if the
elements of inputs[input_idx] have an effect on the elements of
outputs[output_idx].

The node parameter is needed to determine the number of
inputs. Some ops such as Subtensor take a variable number of
inputs.

If no connection_pattern is specified, gradient.grad will
assume that all inputs have some elements connected to some
elements of all outputs.

This method conveys two pieces of information that are otherwise
not part of the theano graph:


	Which of the op’s inputs are truly ancestors of each of the
op’s outputs. Suppose an op has two inputs, x and y, and
outputs f(x) and g(y). y is not really an ancestor of f, but
it appears to be so in the theano graph.

	Whether the actual elements of each input/output are relevant
to a computation.
For example, the shape op does not read its input’s elements,
only its shape metadata. d shape(x) / dx should thus raise
a disconnected input exception (if these exceptions are
enabled).
As another example, the elements of the Alloc op’s outputs
are not affected by the shape arguments to the Alloc op.



Failing to implement this function for an op that needs it can
result in two types of incorrect behavior:


	gradient.grad erroneously raising a TypeError reporting that
a gradient is undefined.

	gradient.grad failing to raise a ValueError reporting that
an input is disconnected.



Even if connection_pattern is not implemented correctly, if
gradient.grad returns an expression, that expression will be
numerically correct.






	
R_op(inputs, eval_points)

	Optional, to work with gradient.R_op().

This function implements the application of the R-operator on the
function represented by your op. Let assume that function is [image: f],
with input [image: x], applying the R-operator means computing the
Jacobian of [image: f] and right-multiplying it by [image: v], the evaluation
point, namely: [image: \frac{\partial f}{\partial x} v].

inputs are the symbolic variables corresponding to the value of
the input where you want to evaluate the jacobian, and eval_points
are the symbolic variables corresponding to the value you want to
right multiply the jacobian with.

Same conventions as for the grad method hold. If your op is not
differentiable, you can return None. Note that in contrast to
the method grad(), for R_op() you need to return the
same number of outputs as there are ouputs of the op. You can think
of it in the following terms. You have all your inputs concatenated
into a single vector [image: x]. You do the same with the evaluation
points (which are as many as inputs and of the shame shape) and obtain
another vector [image: v]. For each output, you reshape it into a vector,
compute the jacobian of that vector with respect to [image: x] and
multiply it by [image: v]. As a last step you reshape each of these
vectors you obtained for each outputs (that have the same shape as
the outputs) back to their corresponding shapes and return them as the
output of the R_op() method.








Defining an Op: mul

We’ll define multiplication as a binary operation, even though a
multiplication Op could take an arbitrary number of arguments.

First, we’ll instantiate a mul Op:

from theano import gof
mul = gof.Op()





make_node

This function must take as many arguments as the operation we are
defining is supposed to take as inputs—in this example that would be
two.  This function ensures that both inputs have the double type.
Since multiplying two doubles yields a double, this function makes an
Apply node with an output Variable of type double.

def make_node(x, y):
    if x.type != double or y.type != double:
        raise TypeError('mul only works on doubles')
    return gof.Apply(mul, [x, y], [double()])
mul.make_node = make_node





The first two lines make sure that both inputs are Variables of the
double type that we created in the previous section. We would not
want to multiply two arbitrary types, it would not make much sense
(and we’d be screwed when we implement this in C!)

The last line is the meat of the definition. There we create an Apply
node representing the application of Op mul to inputs x and
y, giving a Variable instance of type double as the output.


Note

Theano relies on the fact that if you call the make_node method
of Apply’s first argument on the inputs passed as the Apply’s
second argument, the call will not fail and the returned Apply
instance will be equivalent.  This is how graphs are copied.



perform

This code actually computes the function.
In our example, the data in inputs will be instances of Python’s
built-in type float because this is the type that double.filter()
will always return, per our own definition. output_storage will
contain a single storage cell for the multiplication’s variable.

def perform(node, inputs, output_storage):
    x, y = inputs[0], inputs[1]
    z = output_storage[0]
    z[0] = x * y
mul.perform = perform





Here, z is a list of one element. By default, z == [None].


Note

It is possible that z does not contain None. If it contains
anything else, Theano guarantees that whatever it contains is what
perform put there the last time it was called with this
particular storage. Furthermore, Theano gives you permission to do
whatever you want with z‘s contents, chiefly reusing it or the
memory allocated for it. More information can be found in the
Op documentation.




Warning

We gave z the Theano type double in make_node, which means
that a Python float must be put there. You should not put, say, an
int in z[0] because Theano assumes Ops handle typing properly.






Trying out our new Op

In the following code, we use our new Op:

>>> x, y = double('x'), double('y')
>>> z = mul(x, y)
>>> f = theano.function([x, y], z)
>>> f(5, 6)
30.0
>>> f(5.6, 6.7)
37.519999999999996





Note that there is an implicit call to
double.filter() on each argument, so if we give integers as inputs
they are magically cast to the right type. Now, what if we try this?

>>> x = double('x')
>>> z = mul(x, 2)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "/u/breuleuo/hg/theano/theano/gof/op.py", line 207, in __call__
  File "<stdin>", line 2, in make_node
AttributeError: 'int' object has no attribute 'type'






Automatic Constant Wrapping

Well, OK. We’d like our Op to be a bit more flexible. This can be done
by modifying make_node to accept Python int or float as
x and/or y:

def make_node(x, y):
    if isinstance(x, (int, float)):
        x = gof.Constant(double, x)
    if isinstance(y, (int, float)):
        y = gof.Constant(double, y)
    if x.type != double or y.type != double:
        raise TypeError('mul only works on doubles')
    return gof.Apply(mul, [x, y], [double()])
mul.make_node = make_node





Whenever we pass a Python int or float instead of a Variable as x or
y, make_node will convert it to Constant for us. gof.Constant
is a Variable we statically know the value of.

>>> x = double('x')
>>> z = mul(x, 2)
>>> f = theano.function([x], z)
>>> f(10)
20.0
>>> f(3.4)
6.7999999999999998





Now the code works the way we want it to.


Note

Most Theano Ops follow this convention of up-casting literal
make_node arguments to Constants.
This makes typing expressions more natural.  If you do
not want a constant somewhere in your graph, you have to pass a Variable
(like double('x') here).








Final version

The above example is pedagogical.  When you define other basic arithmetic
operations add, sub and div, code for make_node can be
shared between these Ops. Here is revised implementation of these four
arithmetic operators:

from theano import gof

class BinaryDoubleOp(gof.Op):

    def __init__(self, name, fn):
        self.name = name
        self.fn = fn

    def __eq__(self, other):
        return type(self) == type(other) and (self.name == other.name) and (self.fn == other.fn)

    def __hash__(self):
        return hash(type(self)) ^ hash(self.name) ^ hash(self.fn)

    def make_node(self, x, y):
        if isinstance(x, (int, float)):
            x = gof.Constant(double, x)
        if isinstance(y, (int, float)):
            y = gof.Constant(double, y)
        if x.type != double or y.type != double:
            raise TypeError('%s only works on doubles' % self.name)
        return gof.Apply(self, [x, y], [double()])

    def perform(self, node, inp, out):
        x, y = inp
        z, = out
        z[0] = self.fn(x, y)

    def __str__(self):
        return self.name

add = BinaryDoubleOp(name='add',
                     fn=lambda x, y: x + y)

sub = BinaryDoubleOp(name='sub',
                     fn=lambda x, y: x - y)

mul = BinaryDoubleOp(name='mul',
                     fn=lambda x, y: x * y)

div = BinaryDoubleOp(name='div',
                     fn=lambda x, y: x / y)





Instead of working directly on an instance of Op, we create a subclass of
Op that we can parametrize. All the operations we define are binary. They
all work on two inputs with type double. They all return a single
Variable of type double. Therefore, make_node does the same thing
for all these operations, except for the Op reference self passed
as first argument to Apply.  We define perform using the function
fn passed in the constructor.

This design is a flexible way to define basic operations without
duplicating code. The same way a Type subclass represents a set of
structurally similar types (see previous section), an Op subclass
represents a set of structurally similar operations: operations that
have the same input/output types, operations that only differ in one
small detail, etc. If you see common patterns in several Ops that you
want to define, it can be a good idea to abstract out what you can.
Remember that an Op is just an object which satisfies the contract
described above on this page and that you should use all the tools at
your disposal to create these objects as efficiently as possible.

Exercise: Make a generic DoubleOp, where the number of
arguments can also be given as a parameter.
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Views and inplace operations

Theano allows the definition of Ops which return a view on one
of their inputs or operate inplace on one or several
inputs. This allows more efficient operations on numpy’s ndarray
data type than would be possible otherwise.
However, in order to work correctly, these Ops need to
implement an additional interface.

Theano recognizes views and inplace operations specially. It ensures
that they are used in a consistent manner and it ensures that
operations will be carried in a compatible order.

An unfortunate fact is that it is impossible to return a view on an
input with the double type or to operate inplace on it (Python
floats are immutable). Therefore, we can’t make examples of these
concepts out of what we’ve just built. Nonetheless, we will present
the concepts:


Views

A “view” on an object x is an object y which shares memory
with x in some way. In other words, changing x might also
change y and vice versa. For example, imagine a vector structure
which contains two fields: an integer length and a pointer to a memory
buffer. Suppose we have:

x = vector {length: 256,
            address: 0xDEADBEEF}

y = vector {length: 224,
            address: 0xDEADBEEF + 0x10}

z = vector {length: 256,
            address: 0xCAFEBABE}





So x uses the memory range 0xDEADBEEF - 0xDEADBFEF, y the
range 0xDEADBEFF - 0xDEADBFDF and z the range 0xCAFEBABE -
0xCAFEBBBE. Since the ranges for x and y overlap, y is
considered to be a view of x and vice versa.

Suppose you had an Op which took x as input and returned
y. You would need to tell Theano that y is a view of x. For this
purpose, you would set the view_map field as follows:

myop.view_map = {0: [0]}





What this means is that the first output (position 0) is a view of the
first input (position 0). Even though the interface allows a list of
inputs that are viewed by a given output, this feature is currently
unsupported. Here are more examples:

myop.view_map = {0: [0]} # first output is a view of first input
myop.view_map = {0: [1]} # first output is a view of second input
myop.view_map = {1: [0]} # second output is a view of first input

myop.view_map = {0: [0], # first output is a view of first input
                 1: [1]} # *AND* second output is a view of second input

myop.view_map = {0: [0], # first output is a view of first input
                 1: [0]} # *AND* second output is *ALSO* a view of first input

myop.view_map = {0: [0, 1]} # THIS IS NOT SUPPORTED YET! Only put a single input number in the list!








Inplace operations

An inplace operation is one that modifies one or more of its
inputs. For example, the expression x += y where x and y
are numpy.ndarray instances would normally represent an inplace
operation on x.


Note

Inplace operations in Theano still work in a functional setting:
they need to return the modified input. Symbolically, Theano
requires one Variable standing for the input before being modified
and another Variable representing the input after being
modified. Therefore, code using inplace operations would look like
this:

x, y = dscalars('x', 'y')
r1 = log(x)

# r2 is x AFTER the add_inplace - x still represents the value before adding y
r2 = add_inplace(x, y)

# r3 is log(x) using the x from BEFORE the add_inplace
# r3 is the SAME as r1, even if we wrote this line after the add_inplace line
# Theano is actually going to compute r3 BEFORE r2
r3 = log(x)

# this is log(x) using the x from AFTER the add_inplace (so it's like log(x + y))
r4 = log(r2)





Needless to say, this goes for user-defined inplace operations as
well: the modified input must figure in the list of outputs you
give to Apply in the definition of make_node.

Also, for technical reasons but also because they are slightly
confusing to use as evidenced by the previous code, Theano does not
allow the end user to use inplace operations by default. However,
it does allow optimizations to substitute them in in a later
phase. Therefore, typically, if you define an inplace operation,
you will define a pure equivalent and an optimization which
subsitutes one for the other. Theano will automatically verify if
it is possible to do so and will refuse the substitution if it
introduces inconsistencies.



Take the previous definitions of x, y and z and suppose an Op which
adds one to every byte of its input. If we give x as an input to
that Op, it can either allocate a new buffer of the same size as x
(that could be z) and set that new buffer’s bytes to the variable of
the addition. That would be a normal, pure Op. Alternatively,
it could add one to each byte in the buffer x, therefore
changing it. That would be an inplace Op.

Theano needs to be notified of this fact. The syntax is similar to
that of view_map:

myop.destroy_map = {0: [0]}





What this means is that the first output (position 0) operates inplace on the
first input (position 0).

myop.destroy_map = {0: [0]} # first output operates inplace on first input
myop.destroy_map = {0: [1]} # first output operates inplace on second input
myop.destroy_map = {1: [0]} # second output operates inplace on first input

myop.destroy_map = {0: [0], # first output operates inplace on first input
                    1: [1]} # *AND* second output operates inplace on second input

myop.destroy_map = {0: [0], # first output operates inplace on first input
                    1: [0]} # *AND* second output *ALSO* operates inplace on first input

myop.destroy_map = {0: [0, 1]} # first output operates inplace on both the first and second input
# unlike for views, the previous line is legal and supported








Destructive Operations

While some operations will operate inplace on their inputs, some might
simply destroy or corrupt them. For example, an Op could do temporary
calculations right in its inputs. If that is the case, Theano also
needs to be notified. The way to notify Theano is to assume that some
output operated inplace on whatever inputs are changed or corrupted by
the Op (even if the output does not technically reuse any of the
input(s)’s memory). From there, go to the previous section.


Warning

Failure to correctly mark down views and inplace operations using
view_map and destroy_map can lead to nasty bugs. In the
absence of this information, Theano might assume that it is safe to
execute an inplace operation on some inputs before doing other
calculations on the previous values of the inputs. For example,
in the code: y = log(x); x2 = add_inplace(x, z) it is
imperative to do the logarithm before the addition (because after
the addition, the original x that we wanted to take the logarithm
of is gone). If Theano does not know that add_inplace changes
the value of x it might invert the order and that will
certainly lead to erroneous computations.

You can often identify an incorrect view_map or destroy_map
by using debugmode.  Be sure to use DebugMode when developing
a new Op that uses ``view_map`` and/or ``destroy_map``.






Inplace optimization and DebugMode

It is recommended that during the graph construction, all Ops are not inplace.
Then an optimization replaces them with inplace ones. Currently DebugMode checks
all optimizations that were tried even if they got rejected. One reason an inplace
optimization can get rejected is when there is another Op that is already being applied
inplace on the same input. Another reason to reject an inplace optimization is
if it would introduce a cycle into the graph.

The problem with DebugMode is that it will trigger a useless error when
checking a rejected inplace optimization, since it will lead to wrong results.
In order to be able to use DebugMode in more situations, your inplace
optimization can pre-check whether it will get rejected by using the
theano.gof.destroyhandler.fast_inplace_check() function, that will tell
which Ops can be performed inplace. You may then skip the optimization if it is
incompatible with this check. Note however that this check does not cover all
cases where an optimization may be rejected (it will not detect cycles).
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Implementing some specific Ops

This page is a guide on the implementation of some specific types of Ops,
and points to some examples of such implementations.

For the random number generating Ops, it explains different possible
implementation strategies.


Scalar/Elemwise/Reduction Ops

Implementing a Theano scalar Op allows that scalar operation to be reused
by our elemwise operations on tensors. If the scalar operation has C code, the
elemwise implementation will automatically have C code too. This
will enable the fusion of elemwise operations using your new scalar
operation. It can also reuse the GPU elemwise code. It is similar for
reduction operations.

For examples of how to add new scalar operations, you can have a look at
those 2 pull requests, that add GammaLn and Psi [https://github.com/Theano/Theano/pull/686/] and Gamma [https://github.com/Theano/Theano/pull/826/] scalar Ops.

Be careful about some possible problems in the definition of the
grad method, and about dependencies that may not be available. In
particular, see the following fixes:
Fix to grad() methods [https://github.com/Theano/Theano/commit/002872ad97919b97eaf58e095044e3c3067668e4]
and impl() methods related to SciPy [https://github.com/Theano/Theano/commit/08d16c0aa6681fc53d8d0f40342551eb47ff536e].




SciPy Ops

We can wrap SciPy functions in Theano. But SciPy is an optional dependency.
Here is some code that allows the Op to be optional:

try:
    import scipy.linalg
    imported_scipy = True
except ImportError:
    # some ops (e.g. Cholesky, Solve, A_Xinv_b) won't work
    imported_scipy = False

class SomeOp(Op):
    ...
    def make_node(self, x):
        assert imported_scipy, (
        "SciPy not available. SciPy is needed for the SomeOp op.")
        ...

from nose.plugins.skip import SkipTest
class test_SomeOp(utt.InferShapeTester):
    ...
    def test_infer_shape(self):
        if not imported_scipy:
            raise SkipTest("SciPy needed for the SomeOp op.")
        ...








Sparse Ops

There are a few differences to keep in mind if you want to make an op
that uses sparse inputs or outputs, rather than the
usual dense tensors. In particular, in the
make_node() function, you have to call
theano.sparse.as_sparse_variable(x) on sparse input variables,
instead of as_tensor_variable(x).

Another difference is that you need to use SparseVariable and
SparseType instead of TensorVariable and TensorType.

Do not forget that we support only sparse matrices (so only 2 dimensions)
and (like in SciPy) they do not support broadcasting operations by default
(although a few Ops do it when called manually). Also, we support only two
formats for sparse type: csr and csc. So in make_mode(),
you can create output variables like this:

out_format = inputs[0].format  # or 'csr' or 'csc' if the output format is fixed
SparseType(dtype=inputs[0].dtype, format=out_format).make_variable()





See the sparse theano.sparse.basic.Cast op code [https://github.com/Theano/Theano/blob/master/theano/sparse/basic.py#L753]
for a good example of a sparse op with Python code.


Note

From the definition of CSR and CSC formats, CSR column indices are
not necessarily sorted. Likewise for CSC row indices. Use
EnsureSortedIndices if your code does not
support it.

Also, there can be explicit zeros in your inputs. Use
Remove0 or remove0 to
make sure they aren’t present in your input if you don’t support
that.

To remove explicit zeros and make sure indices are sorted, use
clean.




Sparse Gradient

There are 2 types of gradients for sparse
operations: normal
gradient and structured gradient. Please document what your op
implements in its docstring. It is important that the user knows it, and
it is not always easy to infer from the code. Also make clear which
inputs/outputs are sparse and which ones are dense.




Sparse C code

Theano does not have a native C code interface for sparse matrices. The
reason is simple: we use the SciPy sparse matrix objects and they don’t
have a C object. So we use a simple trick: a sparse matrix is made of
4 fields that are NumPy vector arrays: data, indices, indptr
and shape. So to make
an op with C code that has sparse variables as inputs, we actually make an op
that takes as input the needed fields of those sparse variables.

You can extract the 4 fields with
theano.sparse.basic.csm_properties(). You can use
theano.sparse.basic.csm_data(),
theano.sparse.basic.csm_indices(),
theano.sparse.basic.csm_indptr() and
theano.sparse.basic.csm_shape() to extract the individual
fields.

You can look at the AddSD [https://github.com/Theano/Theano/blob/master/theano/sparse/basic.py#L1704]
sparse op for an example with C code. It implements the addition of a
sparse matrix with a dense matrix.




Sparse Tests

You can reuse the test system for tensor variables. To generate the
needed sparse variable and data, you can use
theano.sparse.tests.test_basic.sparse_random_inputs(). It takes
many parameters, including parameters for the format (csr or csc), the shape, the
dtype, whether to have explicit 0 and whether to have unsorted indices.






Random distribution

We have 3 base random number generators. One that wraps NumPy’s random
generator, one that implements MRG31k3p and one that wraps CURAND.

The fastest, but less developed, is CURAND. It works only on CUDA-enabled
GPUs. It does not work on the CPU and it has fewer random distributions
implemented.

The recommended and 2nd faster is MRG. It works on the GPU and CPU and
has more implemented distributions.

The slowest is our wrapper on NumPy’s random generator.

We explain and provide advice on 3 possibles implementations of new
distributions here:


	Extend our wrapper around NumPy random functions.
See this PR [https://github.com/Theano/Theano/pull/1607] as an example.

	Extend MRG implementation by reusing existing Theano Op. Look into
the theano/sandbox/rng_mrg.py file and grep for all code about
binomial(). This distribution uses the output of the uniform
distribution and converts it to a binomial distribution with
existing Theano operations. The tests go in
theano/sandbox/test_rng_mrg.py

	Extend MRG implementation with a new Op that takes a uniform sample as
input. Look in the theano/sandbox/{rng_mrg,multinomial}.py file
and its test in theano/sandbox/test_multinomal.py. This is
recommended when current Theano ops aren’t well suited to modify
the uniform to the target distribution. This can happen in
particular if there is a loop or complicated condition.




Note

In all cases, you must reuse the same interface as NumPy for compatibility.






OpenMP Ops

To allow consistent interface of Ops that support OpenMP, we have some
helper code. Doing this also allows to enable/disable OpenMP globally
or per op for fine-grained control.

Your Op needs to inherit from theano.gof.OpenMPOp. If it overrides
the __init__() method, it must have an openmp=None parameter
and must call super(MyOpClass, self).__init__(openmp=openmp).

The OpenMPOp class also implements c_compile_args and
make_thunk. This makes it add the correct g++ flags to compile with
OpenMP. It also disables OpenMP and prints a warning if the version of
g++ does not support it.

The Theano flag openmp is currently False by default as we do not
have code that gets sped up with it. The only current implementation
is ConvOp. It speeds up some cases, but slows down others. That is why
we disable it by default. But we have all the code to have it enabled
by default if there is more than 1 core and the environment
variable OMP_NUM_THREADS is not 1. This allows Theano to respect the
current convention.




Numba Ops

Want C speed without writing C code for your new Op? You can use Numba
to generate the C code for you! Here is an example
Op [https://gist.github.com/nouiz/5492778#file-theano_op-py] doing that.




Alternate Theano Types

Most ops in Theano are used to manipulate tensors. However, Theano also
supports many other variable types. The supported types are listed below,
along with pointers to the relevant documentation.


	TensorType : Theano type that represents
a multidimensional array containing elements that all have the same
type. Variables of this Theano type are represented in C as objects of
class
PyArrayObject [http://docs.scipy.org/doc/numpy/reference/c-api.types-and-structures.html#PyArrayObject].

	TypedList : Theano type that represents a
typed list (a list where every element in the list has the same Theano
type). Variables of this Theano type are represented in C as objects
of class PyListObject [https://docs.python.org/2/c-api/list.html].

	Scalar : Theano type that represents a C
primitive type. The C type associated with this Theano type is the
represented C primitive itself.

	SparseType : Theano type used to represent sparse
tensors. There is no equivalent C type for this Theano Type but you
can split a sparse variable into its parts as TensorVariables. Those
can then be used as inputs to an op with C code.

	Generic : Theano type that
represents a simple Python Object. Variables of this Theano type are
represented in C as objects of class PyObject [https://docs.python.org/2/c-api/structures.html#c.PyObject].

	CDataType :  Theano type that
represents a C data type. The C type associated with this Theano type
depends on the data being represented.
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Implementing double in C

The previous two sections described how to define a double Type
and arithmetic operations on that Type, but all of them were
implemented in pure Python. In this section we will see how to define
the double type in such a way that it can be used by operations
implemented in C (which we will define in the section after that).


How does it work?

In order to be C-compatible, a Type must provide a C interface to the
Python data that satisfy the constraints it puts forward. In other
words, it must define C code that can convert a Python reference into
some type suitable for manipulation in C and it must define C code
that can convert some C structure in which the C implementation of an
operation stores its variables into a reference to an object that can be
used from Python and is a valid value for the Type.

For example, in the current example, we have a Type which represents a
Python float. First, we will choose a corresponding C type. The
natural choice would be the primitive double type. Then, we need
to write code that will take a PyObject*, check that it is a
Python float and extract its value as a double. Finally, we
need to write code that will take a C double and will build a
PyObject* of Python type float that we can work with from
Python. We will be using CPython and thus special care must be given
to making sure reference counts are updated properly!

The C code we will write makes use of CPython’s C API which you can
find here [http://docs.python.org/c-api/index.html].




What needs to be defined

In order to be C-compatible, a Type must define several additional
methods, which all start with the c_ prefix. The complete list can
be found in the documentation for gof.type.Type. Here, we’ll focus on
the most important ones:


	
class CLinkerType

	
	
c_declare(name, sub, check_input=True)

	This must return C code which declares variables. These variables
will be available to operations defined in C. You may also write
typedefs.






	
c_init(name, sub)

	This must return C code which initializes the variables declared in
c_declare. Either this or c_extract will be called.






	
c_extract(name, sub, check_input=True)

	This must return C code which takes a reference to a Python object
and initializes the variables declared in c_declare to match the
Python object’s data. Either this or c_init will be called.






	
c_sync(name, sub)

	When the computations are done, transfer the variables from the C
structure we put them in to the destination Python object. This will
only be called for the outputs.






	
c_cleanup(name, sub)

	When we are done using the data, clean up whatever we allocated and
decrease the appropriate reference counts.






	
c_headers()

	
c_libraries()

	
c_header_dirs()

	
c_lib_dirs()

	Allows you to specify headers, libraries and associated directories.






	
c_compile_args()

	
c_no_compile_args()

	Allows to specify special compiler arguments to add/exclude.






	
c_init_code()

	Allows you to specify code that will be executed once when the
module is initialized, before anything else is executed.
For instance, if a type depends on NumPy’s C API, then
'import_array();' has to be among the snippets returned
by c_init_code().






	
c_support_code()

	Allows to add helper functions/structs that the Type needs.






	
c_compiler()

	Allows to specify a special compiler. This will force this compiler
for the current compilation block (a particular op or the full graph).
This is used for the GPU code.






	
c_code_cache_version()

	Should return a tuple of hashable objects like integers. This
specifies the version of the code. It is used to cache the
compiled code. You MUST change the returned tuple for each
change in the code. If you don’t want to cache the compiled code
return an empty tuple or don’t implement it.









Each of these functions take two arguments, name and sub which
must be used to parameterize the C code they return. name is a
string which is chosen by the compiler to represent a Variable of
the Type in such a way that there are no name conflicts between
different pieces of data. Therefore, all variables declared in
c_declare should have a name which includes name. Furthermore,
the name of the variable containing a pointer to the Python object
associated to the Variable is py_<name>.

sub, on the other hand, is a dictionary containing bits of C code
suitable for use in certain situations. For instance, sub['fail']
contains code that should be inserted wherever an error is identified.

c_declare and c_extract also accept a third check_input
optional argument. If you want your type to validate its inputs, it must
only do it when check_input is True.

The example code below should help you understand how everything plays
out:


Warning

If some error condition occurs and you want to fail and/or raise an
Exception, you must use the fail code contained in
sub['fail'] (there is an example in the definition of c_extract
below). You must NOT use the return statement anywhere, ever,
nor break outside of your own loops or goto to strange
places or anything like that. Failure to comply with this
restriction could lead to erratic behavior, segfaults and/or memory
leaks because Theano defines its own cleanup system and assumes
that you are not meddling with it. Furthermore, advanced operations
or types might do code transformations on your code such as
inserting it in a loop – in that case they can call your
code-generating methods with custom failure code that takes into account
what they are doing!






Defining the methods

c_declare

def c_declare(name, sub):
    return """
    double %(name)s;
    """ % dict(name = name)
double.c_declare = c_declare





Very straightforward. All we need to do is write C code to declare a
double. That double will be named whatever is passed to our function
in the name argument. That will usually be some mangled name like
“V0”, “V2” or “V92” depending on how many nodes there are in the
computation graph and what rank the current node has. This function
will be called for all Variables whose type is double.

You can declare as many variables as you want there and you can also
do typedefs. Make sure that the name of each variable contains the
name argument in order to avoid name collisions (collisions will
happen if you don’t parameterize the variable names as indicated
here). Also note that you cannot declare a variable called
py_<name> or storage_<name> because Theano already defines
them.

What you declare there is basically the C interface you are giving to
your Type. If you wish people to develop operations that make use of
it, it’s best to publish it somewhere.

c_init

def c_init(name, sub):
    return """
    %(name)s = 0.0;
    """ % dict(name = name)
double.c_init = c_init





This function has to initialize the
double we declared previously to a suitable value. This is useful if
we want to avoid dealing with garbage values, especially if our data
type is a pointer. This is not going to be called for all Variables with
the double type. Indeed, if a Variable is an input that we pass
from Python, we will want to extract that input from a Python object,
therefore it is the c_extract method that will be called instead of
c_init. You can therefore not assume, when writing c_extract, that the
initialization has been done (in fact you can assume that it hasn’t
been done).

c_init will typically be called on output Variables, but in general
you should only assume that either c_init or c_extract has been
called, without knowing for sure which of the two.

c_extract

def c_extract(name, sub):
    return """
    if (!PyFloat_Check(py_%(name)s)) {
        PyErr_SetString(PyExc_TypeError, "expected a float");
        %(fail)s
    }
    %(name)s = PyFloat_AsDouble(py_%(name)s);
    """ % dict(name = name, fail = sub['fail'])
double.c_extract = c_extract





This method is slightly more sophisticated. What happens here is that
we have a reference to a Python object which Theano has placed in
py_%(name)s where %(name)s must be substituted for the name
given in the inputs. This special variable is declared by Theano as
PyObject* py_%(name)s where PyObject* is a pointer to a Python
object as defined by CPython’s C API. This is the reference that
corresponds, on the Python side of things, to a Variable with the
double type. It is what the end user will give and what he or she
expects to get back.

In this example, the user will give a Python float. The first
thing we should do is verify that what we got is indeed a Python
float. The PyFloat_Check function is provided by CPython’s C
API and does this for us. If the check fails, we set an exception and
then we insert code for failure. The code for failure is in
sub["fail"] and it basically does a goto to cleanup code.

If the check passes then we convert the Python float into a double
using the PyFloat_AsDouble function (yet again provided by CPython’s C
API) and we put it in our double variable that we declared previously.

c_sync

def c_sync(name, sub):
    return """
    Py_XDECREF(py_%(name)s);
    py_%(name)s = PyFloat_FromDouble(%(name)s);
    if (!py_%(name)s) {
        printf("PyFloat_FromDouble failed on: %%f\\n", %(name)s);
        Py_XINCREF(Py_None);
        py_%(name)s = Py_None;
    }
    """ % dict(name = name)
double.c_sync = c_sync





This function is probably the trickiest. What happens here is that we
have computed some operation on doubles and we have put the variable
into the double variable %(name)s. Now, we need to put this data
into a Python object that we can manipulate on the Python side of
things. This Python object must be put into the py_%(name)s
variable which Theano recognizes (this is the same pointer we get in
c_extract).

Now, that pointer is already a pointer to a valid Python object
(unless you or a careless implementer did terribly wrong things with
it). If we want to point to another object, we need to tell Python
that we don’t need the old one anymore, meaning that we need to
decrease the previous object’s reference count. The first line,
Py_XDECREF(py_%(name)s) does exactly this. If it is forgotten,
Python will not be able to reclaim the data even if it is not used
anymore and there will be memory leaks! This is especially important
if the data you work on is large.

Now that we have decreased the reference count, we call
PyFloat_FromDouble on our double variable in order to convert it
to a Python float. This returns a new reference which we assign to
py_%(name)s. From there Theano will do the rest and the end user
will happily see a Python float come out of his computations.

The rest of the code is not absolutely necessary and it is basically
“good practice”. PyFloat_FromDouble can return NULL on failure.
NULL is a pretty bad reference to have and neither Python nor Theano
like it. If this happens, we change the NULL pointer (which will
cause us problems) to a pointer to None (which is not a NULL
pointer). Since None is an object like the others, we need to
increase its reference count before we can set a new pointer to it. This
situation is unlikely to ever happen, but if it ever does, better safe
than sorry.


Warning

I said this already but it really needs to be emphasized that if
you are going to change the py_%(name)s pointer to point to a
new reference, you must decrease the reference count of whatever
it was pointing to before you do the change. This is only valid if
you change the pointer, if you are not going to change the pointer,
do NOT decrease its reference count!



c_cleanup

def c_cleanup(name, sub):
    return ""
double.c_cleanup = c_cleanup





We actually have nothing to do here. We declared a double on the stack
so the C language will reclaim it for us when its scope ends. We
didn’t malloc() anything so there’s nothing to free(). Furthermore,
the py_%(name)s pointer hasn’t changed so we don’t need to do
anything with it. Therefore, we have nothing to cleanup. Sweet!

There are however two important things to keep in mind:

First, note that c_sync and c_cleanup might be called in
sequence, so they need to play nice together. In particular, let’s
say that you allocate memory in c_init or c_extract for some
reason. You might want to either embed what you allocated to some Python
object in c_sync or to free it in c_cleanup. If you do the
former, you don’t want to free the allocated storage so you should set
the pointer to it to NULL to avoid that c_cleanup mistakenly
frees it. Another option is to declare a variable in c_declare that
you set to true in c_sync to notify c_cleanup that c_sync
was called.

Second, whenever you use %(fail)s in c_extract or in the code of an
operation, you can count on c_cleanup being called right
after that. Therefore, it’s important to make sure that c_cleanup
doesn’t depend on any code placed after a reference to
%(fail)s. Furthermore, because of the way Theano blocks code together,
only the variables declared in c_declare will be visible in c_cleanup!




What the generated C will look like

c_init and c_extract will only be called if there is a Python
object on which we want to apply computations using C
code. Conversely, c_sync will only be called if we want to
communicate the values we have computed to Python, and c_cleanup
will only be called when we don’t need to process the data with C
anymore. In other words, the use of these functions for a given Variable
depends on the the relationship between Python and C with respect to
that Variable. For instance, imagine you define the following function
and call it:

from theano import function
from theano.tensor import double

x, y, z = double('x'), double('y'), double('z')
a = add(x, y)
b = mul(a, z)
f = function([x, y, z], b)
f(1.0, 2.0, 3.0)





Using the CLinker, the code that will be produced will look roughly
like this:

// BEGIN defined by Theano
PyObject* py_x = ...;
PyObject* py_y = ...;
PyObject* py_z = ...;
PyObject* py_a = ...; // note: this reference won't actually be used for anything
PyObject* py_b = ...;
// END defined by Theano

{
  double x; //c_declare for x
  x = ...; //c_extract for x
  {
    double y; //c_declare for y
    y = ...; //c_extract for y
    {
      double z; //c_declare for z
      z = ...; //c_extract for z
      {
        double a; //c_declare for a
        a = 0; //c_init for a
        {
          double b; //c_declare for b
          b = 0; //c_init for b
          {
            a = x + y; //c_code for add
            {
              b = a * z; //c_code for mul
            labelmul:
              //c_cleanup for mul
            }
          labeladd:
            //c_cleanup for add
          }
        labelb:
          py_b = ...; //c_sync for b
          //c_cleanup for b
        }
      labela:
        //c_cleanup for a
      }
    labelz:
      //c_cleanup for z
    }
  labely:
    //c_cleanup for y
  }
labelx:
  //c_cleanup for x
}





It’s not pretty, but it gives you an idea of how things work (note that
the variable names won’t be x, y, z, etc. - they will
get a unique mangled name). The fail code runs a goto to the
appropriate label in order to run all cleanup that needs to be
done. Note which variables get extracted (the three inputs x, y and
z), which ones only get initialized (the temporary variable a and the
output b) and which one is synced (the final output b).

The C code above is a single C block for the whole graph. Depending on
which linker is used to process the computation graph, it is
possible that one such block is generated for each operation and that
we transit through Python after each operation. In that situation,
a would be synced by the addition block and extracted by the
multiplication block.




Final version

from theano import gof

class Double(gof.Type):

    def filter(self, x, strict=False, allow_downcast=None):
        if strict and not isinstance(x, float):
            raise TypeError('Expected a float!')
        return float(x)

    def values_eq_approx(self, x, y, tolerance=1e-4):
        return abs(x - y) / (x + y) < tolerance

    def __str__(self):
        return "double"

    def c_declare(self, name, sub):
        return """
        double %(name)s;
        """ % dict(name = name)

    def c_init(self, name, sub):
        return """
        %(name)s = 0.0;
        """ % dict(name = name)

    def c_extract(self, name, sub):
        return """
        if (!PyFloat_Check(py_%(name)s)) {
            PyErr_SetString(PyExc_TypeError, "expected a float");
            %(fail)s
        }
        %(name)s = PyFloat_AsDouble(py_%(name)s);
        """ % dict(sub, name = name)

    def c_sync(self, name, sub):
        return """
        Py_XDECREF(py_%(name)s);
        py_%(name)s = PyFloat_FromDouble(%(name)s);
        if (!py_%(name)s) {
            printf("PyFloat_FromDouble failed on: %%f\\n", %(name)s);
            Py_XINCREF(Py_None);
            py_%(name)s = Py_None;
        }
        """ % dict(name = name)

    def c_cleanup(self, name, sub):
        return ""

double = Double()








DeepCopyOp

We have an internal Op called DeepCopyOp. It is used to make sure we
respect the user vs Theano memory region as described in the tutorial. Theano has a Python implementation that calls the object’s
copy() or deepcopy() method for Theano types for which it does not
know how to generate C code.

You can implement c_code for this op. You register it like this:

theano.compile.ops.register_deep_copy_op_c_code(YOUR_TYPE_CLASS, THE_C_CODE, version=())





In your C code, you should use %(iname)s and %(oname)s to represent
the C variable names of the DeepCopyOp input and output
respectively. See an example for the type CudaNdarrayType (GPU
array) in the file theano/sandbox/cuda/type.py. The version
parameter is what is returned by DeepCopyOp.c_code_cache_version(). By
default, it will recompile the c code for each process.




ViewOp

We have an internal Op called ViewOp. It is used for some
verification of inplace/view Ops. Its C implementation increments and
decrements Python reference counts, and thus only works with Python
objects. If your new type represents Python objects, you should tell
ViewOp to generate C code when working with this type, as
otherwise it will use Python code instead. This is achieved by
calling:

theano.compile.ops.register_view_op_c_code(YOUR_TYPE_CLASS, THE_C_CODE, version=())





In your C code, you should use %(iname)s and %(oname)s to represent
the C variable names of the ViewOp input and output
respectively. See an example for the type CudaNdarrayType (GPU
array) in the file theano/sandbox/cuda/type.py. The version
parameter is what is returned by ViewOp.c_code_cache_version(). By
default, it will recompile the c code for each process.




Shape and Shape_i

We have 2 generic Ops, Shape and Shape_i, that return the shape of any
Theano Variable that has a shape attribute (Shape_i returns only one of
the elements of the shape).

theano.compile.ops.register_shape_c_code(YOUR_TYPE_CLASS, THE_C_CODE, version=())
theano.compile.ops.register_shape_i_c_code(YOUR_TYPE_CLASS, THE_C_CODE, CHECK_INPUT, version=())





The C code works as the ViewOp. Shape_i has the additional i parameter
that you can use with %(i)s.

In your CHECK_INPUT, you must check that the input has enough dimensions to
be able to access the i-th one.
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Implementing the arithmetic Ops in C

Now that we have set up our double type properly to allow C
implementations for operations that work on it, all we have to do now
is to actually define these operations in C.


How does it work?

Before a C Op is executed, the variables related to each of its
inputs will be declared and will be filled appropriately, either from
an input provided by the end user (using c_extract) or it might simply
have been calculated by another operation. For each of the outputs,
the variables associated to them will be declared and initialized.

The operation then has to compute what it needs to using the
input variables and place the variables in the output variables.




What needs to be defined

There are less methods to define for an Op than for a Type:


	
class Op

	
	
c_code(node, name, input_names, output_names, sub)

	This must return C code that carries the computation we want to
do.

sub is a dictionary of extras parameters to the c_code
method. It contains the following values:

sub['fail']


A string of code that you should execute (after ensuring
that a python exception is set) if your C code needs to
raise an exception.


sub['context']


(optional) The name of the variable which holds the context
for the node.  This will only appear if the op has requested
a context by having a get_context() method that return
something other than None.







	
c_code_cleanup(node, name, input_names, output_names, sub)

	This must return C code that cleans up whatever c_code
allocated and that we must free.

Default: The default behavior is to do nothing.






	
c_headers()

	Returns a list of headers to include in the file. ‘Python.h’ is
included by default so you don’t need to specify it.  Also all
of the header required by the Types involved (inputs and
outputs) will also be included.






	
c_header_dirs()

	Returns a list of directories to search for headers (arguments
to -I).






	
c_libraries()

	Returns a list of library names that your op needs to link to.
All ops are automatically linked with ‘python’ and the
libraries their types require. (arguments to -l)






	
c_lib_dirs()

	Returns a list of directory to search for libraries (arguments
to -L).






	
c_compile_args()

	Allows to specify additional arbitrary arguments to g++.  This
is not usually required.






	
c_no_compile_args()

	Returns a list of g++ arguments that are forbidden when
compiling this Op.






	
c_init_code()

	Allows you to specify code that will be executed once when the
module is initialized, before anything else is executed.  This
is for code that will be executed once per Op.






	
c_init_code_apply(node, name)

	Allows you to specify code that will be executed once when the
module is initialized, before anything else is executed and is
specialized for a particular apply of an Op.






	
c_init_code_struct(node, name, sub)

	Allows you to specify code that will be inserted in the struct
constructor of the Op.  This is for code which should be
executed once per thunk (Apply node, more or less).

sub is a dictionary of extras parameters to the
c_code_init_code_struct method. It contains the following
values:

sub['fail']


A string of code that you should execute (after ensuring
that a python exception is set) if your C code needs to
raise an exception.


sub['context']


(optional) The name of the variable which holds the context
for the node.  This will only appear if the op has requested
a context by having a get_context() method that return
something other than None.







	
c_support_code()

	Allows you to specify helper functions/structs that the
Op needs.  That code will be reused for each apply of
this op. It will be inserted at global scope.






	
c_support_code_apply(node, name)

	Allows you to specify helper functions/structs specialized for
a particular apply of an Op. Use c_support_code()
if the code is the same for each apply of an op.  It will be
inserted at global scope.






	
c_support_code_struct(node, name)

	Allows you to specify helper functions of variables that will
be specific to one particular thunk.  These are inserted at
struct scope.





	Note:	You cannot specify CUDA kernels in the code returned by this
since that isn’t supported by CUDA.  You should place your
kernels in c_support_code() or
c_support_code_apply() and call them from this code.










	
c_cleanup_code_struct(node, name)

	Allows you to specify code that will be inserted in the struct
destructor of the Op.  This is for cleaninp up allocations and
stuff like this when the thunk is released (when you “free” a
compiled function using this op).






	
infer_shape(node, (i0_shapes, i1_shapes, ...))

	Allow optimizations to lift the Shape op over this op.  An
example of why this is good is when we only need the shape of a
variable: we will be able to obtain it without computing the
variable itself.

Must return a list where each element is a tuple representing
the shape of one output.

For example, for the matrix-matrix product infer_shape will
have as inputs (node, ((x0,x1), (y0,y1))) and should return
[(x0, y1)]. Both the inputs and the return value may be Theano
variables.






	
c_code_cache_version()

	Must return a tuple of hashable objects like integers. This
specifies the version of the code. It is used to cache the
compiled code. You MUST change the returned tuple for each
change in the code. If you don’t want to cache the compiled
code return an empty tuple or don’t implement it.






	
c_code_cache_version_apply(node)

	Overrides c_code_cache_version() if defined, but
otherwise has the same contract.






	
python_constant_folding(node)

	Optional. If present this method will be called before doing
constant folding of a node, with that node as a parameter. If
it return True, we will not generate c code when doing constant
folding of this node.  This is useful when the compilation of
the c code will be longer then the computation in python
(e.g. Elemwise of scalars).

In addition, this allow to lower the number of compiled module
and disk access. Particularly useful when the file system load
is high or when theano compilation directory is shared by many
process (like on a network file server on a cluster).






	
get_context(node)

	(optional) If defined, should return the runtime context the op
needs.  This context will be passed to the C code through the
variable named in sub[‘context’].  The variable is also
available for use in the code returned by
c_init_code_struct().  If it returns None this is
considered the same as if the method was not defined.

If this method is defined and does not return None, then the
Op must have a context_type property with the Type to use
for the context variable.









The name argument is currently given an invalid value, so steer
away from it. As was the case with Type, sub['fail'] provides
failure code that you must use if you want to raise an exception,
after setting the exception message.

The node argument is an Apply node representing an
application of the current Op on a list of inputs, producing a list of
outputs. input_names and output_names arguments contain as
many strings as there are inputs and outputs to the application of the
Op and they correspond to the name that is passed to the type of
each Variable in these lists. For example, if node.inputs[0].type ==
double, then input_names[0] is the name argument passed to
double.c_declare etc. when the first input is processed by Theano.

In a nutshell, input_names and output_names parameterize the
names of the inputs your operation needs to use and the outputs it
needs to put variables into. But this will be clear with the examples.




Defining the methods

We will be defining C code for the multiplication Op on doubles.

c_code

def c_code(node, name, input_names, output_names, sub):
    x_name, y_name = input_names[0], input_names[1]
    output_name = output_names[0]
    return """
    %(output_name)s = %(x_name)s * %(y_name)s;
    """ % locals()
mul.c_code = c_code





And that’s it. As we enter the scope of the C code we are defining in
the method above, many variables are defined for us. Namely, the
variables x_name, y_name and output_name are all of the primitive C
double type and they were declared using the C code returned by
double.c_declare.

Implementing multiplication is as simple as multiplying the two input
doubles and setting the output double to what comes out of it. If you
had more than one output, you would just set the variable(s) for
each output to what they should be.


Warning

Do NOT use C’s return statement to return the variable(s) of
the computations. Set the output variables directly as shown
above. Theano will pick them up for you.



c_code_cleanup

There is nothing to cleanup after multiplying two doubles. Typically,
you won’t need to define this method unless you malloc() some
temporary storage (which you would free() here) or create temporary
Python objects (which you would Py_XDECREF() here).




Final version

As before, I tried to organize the code in order to minimize
repetition. You can check that mul produces the same C code in this
version that it produces in the code I gave above.

from theano import gof

class BinaryDoubleOp(gof.Op):

    def __init__(self, name, fn, ccode):
        self.name = name
        self.fn = fn
        self.ccode = ccode

    def make_node(self, x, y):
        if isinstance(x, (int, float)):
            x = gof.Constant(double, x)
        if isinstance(y, (int, float)):
            y = gof.Constant(double, y)
        if x.type != double or y.type != double:
            raise TypeError('%s only works on doubles' % self.name)
        return gof.Apply(self, [x, y], [double()])

    def perform(self, node, inp, out):
        x, y = inp
        z, = out
        z[0] = self.fn(x, y)

    def __str__(self):
        return self.name

    def c_code(self, node, name, inp, out, sub):
        x, y = inp
        z, = out
        return self.ccode % locals()


add = BinaryDoubleOp(name='add',
                     fn=lambda x, y: x + y,
                     ccode="%(z)s = %(x)s + %(y)s;")

sub = BinaryDoubleOp(name='sub',
                     fn=lambda x, y: x - y,
                     ccode="%(z)s = %(x)s - %(y)s;")

mul = BinaryDoubleOp(name='mul',
                     fn=lambda x, y: x * y,
                     ccode="%(z)s = %(x)s * %(y)s;")

div = BinaryDoubleOp(name='div',
                     fn=lambda x, y: x / y,
                     ccode="%(z)s = %(x)s / %(y)s;")
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Graph optimization

In this section we will define a couple optimizations on doubles.


Todo

This tutorial goes way too far under the hood, for someone who just wants
to add yet another pattern to the libraries in tensor.opt for example.

We need another tutorial that covers the decorator syntax, and explains how
to register your optimization right away.  That’s what you need to get
going.

Later, the rest is more useful for when that decorator syntax type thing
doesn’t work. (There are optimizations that don’t fit that model).




Note

The optimization tag cxx_only is used for optimizations that insert
Ops which have no Python implementation (so they only have C code).
Optimizations with this tag are skipped when there is no C++ compiler
available.




Global and local optimizations

First, let’s lay out the way optimizations work in Theano. There are
two types of optimizations: global optimizations and local
optimizations. A global optimization takes a FunctionGraph object (a
FunctionGraph is a wrapper around a whole computation graph, you can see its
documentation for more details) and navigates through it
in a suitable way, replacing some Variables by others in the process. A
local optimization, on the other hand, is defined as a function on a
single Apply node and must return either False (to mean that
nothing is to be done) or a list of new Variables that we would like to
replace the node’s outputs with. A Navigator is a special kind
of global optimization which navigates the computation graph in some
fashion (in topological order, reverse-topological order, random
order, etc.) and applies one or more local optimizations at each step.

Optimizations which are holistic, meaning that they must take into
account dependencies that might be all over the graph, should be
global. Optimizations that can be done with a narrow perspective are
better defined as local optimizations. The majority of optimizations
we want to define are local.


Global optimization

A global optimization (or optimizer) is an object which defines the following
methods:


	
class Optimizer

	
	
apply(fgraph)

	This method takes a FunctionGraph object which contains the computation graph
and does modifications in line with what the optimization is meant
to do. This is one of the main methods of the optimizer.






	
add_requirements(fgraph)

	This method takes a FunctionGraph object and adds features to it. These features are “plugins” that are needed
for the apply method to do its job properly.






	
optimize(fgraph)

	This is the interface function called by Theano.

Default: this is defined by Optimizer as add_requirement(fgraph);
apply(fgraph).









See the section about FunctionGraph to understand how to define these
methods.




Local optimization

A local optimization is an object which defines the following methods:


	
class LocalOptimizer

	
	
transform(node)

	This method takes an Apply node and returns either False to
signify that no changes are to be done or a list of Variables which
matches the length of the node’s outputs list. When the
LocalOptimizer is applied by a Navigator, the outputs of the node
passed as argument to the LocalOptimizer will be replaced by the
list returned.














One simplification rule

For starters, let’s define the following simplification:


[image: \frac{xy}{y} = x]


We will implement it in three ways: using a global optimization, a
local optimization with a Navigator and then using the PatternSub
facility.


Global optimization

Here is the code for a global optimization implementing the
simplification described above:

from theano.gof import toolbox

class Simplify(gof.Optimizer):
    def add_requirements(self, fgraph):
        fgraph.attach_feature(toolbox.ReplaceValidate())
    def apply(self, fgraph):
        for node in fgraph.toposort():
            if node.op == div:
                x, y = node.inputs
                z = node.outputs[0]
                if x.owner and x.owner.op == mul:
                    a, b = x.owner.inputs
                    if y == a:
                        fgraph.replace_validate(z, b)
                    elif y == b:
                        fgraph.replace_validate(z, a)

simplify = Simplify()






Todo

What is add_requirements? Why would we know to do this? Are there other
requirements we might want to  know about?



Here’s how it works: first, in add_requirements, we add the
ReplaceValidate FunctionGraph Features located in
toolbox – [doc TODO]. This feature adds the replace_validate
method to fgraph, which is an enhanced version of replace that
does additional checks to ensure that we are not messing up the
computation graph (note: if ReplaceValidate was already added by
another optimizer, extend will do nothing). In a nutshell,
toolbox.ReplaceValidate grants access to fgraph.replace_validate,
and fgraph.replace_validate allows us to replace a Variable with
another while respecting certain validation constraints. You can
browse the list of FunctionGraph Feature List and see if some of
them might be useful to write optimizations with. For example, as an
exercise, try to rewrite Simplify using NodeFinder. (Hint: you
want to use the method it publishes instead of the call to toposort!)

Then, in apply we do the actual job of simplification. We start by
iterating through the graph in topological order. For each node
encountered, we check if it’s a div node. If not, we have nothing
to do here. If so, we put in x, y and z the numerator,
denominator and quotient (output) of the division.
The simplification only occurs when the numerator is a multiplication,
so we check for that. If the numerator is a multiplication we put the
two operands in a and b, so
we can now say that z == (a*b)/y. If y==a then z==b and if
y==b then z==a. When either case happens then we can replace
z by either a or b using fgraph.replace_validate - else we do
nothing. You might want to check the documentation about Variable
and Apply to get a better understanding of the
pointer-following game you need to get ahold of the nodes of interest
for the simplification (x, y, z, a, b, etc.).

Test time:

>>> x = double('x')
>>> y = double('y')
>>> z = double('z')
>>> a = add(z, mul(div(mul(y, x), y), div(z, x)))
>>> e = gof.FunctionGraph([x, y, z], [a])
>>> e
[add(z, mul(div(mul(y, x), y), div(z, x)))]
>>> simplify.optimize(e)
>>> e
[add(z, mul(x, div(z, x)))]





Cool! It seems to work. You can check what happens if you put many
instances of [image: \frac{xy}{y}] in the graph. Note that it sometimes
won’t work for reasons that have nothing to do with the quality of the
optimization you wrote. For example, consider the following:

>>> x = double('x')
>>> y = double('y')
>>> z = double('z')
>>> a = div(mul(add(y, z), x), add(y, z))
>>> e = gof.FunctionGraph([x, y, z], [a])
>>> e
[div(mul(add(y, z), x), add(y, z))]
>>> simplify.optimize(e)
>>> e
[div(mul(add(y, z), x), add(y, z))]





Nothing happened here. The reason is: add(y, z) != add(y,
z). That is the case for efficiency reasons. To fix this problem we
first need to merge the parts of the graph that represent the same
computation, using the merge_optimizer defined in
theano.gof.opt.

>>> from theano.gof.opt import merge_optimizer
>>> merge_optimizer.optimize(e)
>>> e
[div(mul(*1 -> add(y, z), x), *1)]
>>> simplify.optimize(e)
>>> e
[x]





Once the merge is done, both occurrences of add(y, z) are
collapsed into a single one and is used as an input in two
places. Note that add(x, y) and add(y, x) are still considered
to be different because Theano has no clue that add is
commutative. You may write your own global optimizer to identify
computations that are identical with full knowledge of the rules of
arithmetics that your Ops implement. Theano might provide facilities
for this somewhere in the future.


Note

FunctionGraph is a Theano structure intended for the optimization
phase. It is used internally by function and is rarely
exposed to the end user. You can use it to test out optimizations,
etc. if you are comfortable with it, but it is recommended to use
the function frontend and to interface optimizations with
optdb (we’ll see how to do that soon).






Local optimization

The local version of the above code would be the following:

class LocalSimplify(gof.LocalOptimizer):
    def transform(self, node):
        if node.op == div:
            x, y = node.inputs
            if x.owner and x.owner.op == mul:
                a, b = x.owner.inputs
                if y == a:
                    return [b]
                elif y == b:
                    return [a]
        return False
    def tracks(self):
        # This should be needed for the EquilibriumOptimizer
        # but it isn't now
        # TODO: do this and explain it
        return [] # that's not what you should do

local_simplify = LocalSimplify()






Todo

Fix up previous example... it’s bad and incomplete.



The definition of transform is the inner loop of the global optimizer,
where the node is given as argument. If no changes are to be made,
False must be returned. Else, a list of what to replace the node’s
outputs with must be returned. This list must have the same length as
node.ouputs. If one of node.outputs don’t have clients(it is not used
in the graph), you can put None in the returned list to remove it.

In order to apply the local optimizer we must use it in conjunction
with a Navigator. Basically, a Navigator is a global
optimizer that loops through all nodes in the graph (or a well-defined
subset of them) and applies one or several local optimizers on them.

>>> x = double('x')
>>> y = double('y')
>>> z = double('z')
>>> a = add(z, mul(div(mul(y, x), y), div(z, x)))
>>> e = gof.FunctionGraph([x, y, z], [a])
>>> e
[add(z, mul(div(mul(y, x), y), div(z, x)))]
>>> simplify = gof.TopoOptimizer(local_simplify)
>>> simplify.optimize(e)
>>> e
[add(z, mul(x, div(z, x)))]






OpSub, OpRemove, PatternSub

Theano defines some shortcuts to make LocalOptimizers:


	
OpSub(op1, op2)

	Replaces all uses of op1 by op2. In other
words, the outputs of all Apply involving op1 by the outputs
of Apply nodes involving op2, where their inputs are the same.






	
OpRemove(op)

	Removes all uses of op in the following way:
if y = op(x) then y is replaced by x. op must have as many
outputs as it has inputs. The first output becomes the first input,
the second output becomes the second input, and so on.






	
PatternSub(pattern1, pattern2)

	Replaces all occurrences of the first pattern by the second pattern.
See PatternSub.





from theano.gof.opt import OpSub, OpRemove, PatternSub

# Replacing add by mul (this is not recommended for primarily
# mathematical reasons):
add_to_mul = OpSub(add, mul)

# Removing identity
remove_identity = OpRemove(identity)

# The "simplify" operation we've been defining in the past few
# sections. Note that we need two patterns to account for the
# permutations of the arguments to mul.
local_simplify_1 = PatternSub((div, (mul, 'x', 'y'), 'y'),
                              'x')
local_simplify_2 = PatternSub((div, (mul, 'x', 'y'), 'x'),
                              'y')






Note

OpSub, OpRemove and PatternSub produce local optimizers, which
means that everything we said previously about local optimizers
apply: they need to be wrapped in a Navigator, etc.




Todo

wtf is a navigator?



When an optimization can be naturally expressed using OpSub, OpRemove
or PatternSub, it is highly recommended to use them.

WRITEME: more about using PatternSub (syntax for the patterns, how to
use constraints, etc. - there’s some decent doc at
PatternSub for those interested)








The optimization database (optdb)

Theano exports a symbol called optdb which acts as a sort of
ordered database of optimizations. When you make a new optimization,
you must insert it at the proper place in the database. Furthermore,
you can give each optimization in the database a set of tags that can
serve as a basis for filtering.

The point of optdb is that you might want to apply many optimizations
to a computation graph in many unique patterns. For example, you might
want to do optimization X, then optimization Y, then optimization
Z. And then maybe optimization Y is an EquilibriumOptimizer containing
LocalOptimizers A, B and C which are applied on every node of the
graph until they all fail to change it. If some optimizations act up,
we want an easy way to turn them off. Ditto if some optimizations are
very CPU-intensive and we don’t want to take the time to apply them.

The optdb system allows us to tag each optimization with a unique name
as well as informative tags such as ‘stable’, ‘buggy’ or
‘cpu_intensive’, all this without compromising the structure of the
optimizations.


Definition of optdb

optdb is an object which is an instance of
SequenceDB,
itself a subclass of DB.
There exist (for now) two types of DB, SequenceDB and EquilibriumDB.
When given an appropriate Query, DB objects build an Optimizer matching
the query.

A SequenceDB contains Optimizer or DB objects. Each of them has a
name, an arbitrary number of tags and an integer representing their
order in the sequence. When a Query is applied to a SequenceDB, all
Optimizers whose tags match the query are inserted in proper order in
a SequenceOptimizer, which is returned. If the SequenceDB contains DB
instances, the Query will be passed to them as well and the optimizers
they return will be put in their places.

An EquilibriumDB contains LocalOptimizer or DB objects. Each of them
has a name and an arbitrary number of tags. When a Query is applied to
an EquilibriumDB, all LocalOptimizers that match the query are
inserted into an EquilibriumOptimizer, which is returned. If the
SequenceDB contains DB instances, the Query will be passed to them as
well and the LocalOptimizers they return will be put in their places
(note that as of yet no DB can produce LocalOptimizer objects, so this
is a moot point).

Theano contains one principal DB object, optdb, which
contains all of Theano’s optimizers with proper tags. It is
recommended to insert new Optimizers in it. As mentioned previously,
optdb is a SequenceDB, so, at the top level, Theano applies a sequence
of global optimizations to the computation graphs.




Query

A Query is built by the following call:

theano.gof.Query(include, require = None, exclude = None, subquery = None)






	
class Query

	
	
include

	A set of tags (a tag being a string) such that every
optimization obtained through this Query must have one of the tags
listed. This field is required and basically acts as a starting point
for the search.






	
require

	A set of tags such that every optimization obtained
through this Query must have all of these tags.






	
exclude

	A set of tags such that every optimization obtained
through this Query must have none of these tags.






	
subquery

	optdb can contain sub-databases; subquery is a
dictionary mapping the name of a sub-database to a special Query.
If no subquery is given for a sub-database, the original Query will be
used again.









Furthermore, a Query object includes three methods, including,
requiring and excluding which each produce a new Query object
with include, require and exclude sets refined to contain the new [WRITEME]




Examples

Here are a few examples of how to use a Query on optdb to produce an
Optimizer:

from theano.compile import optdb

# This is how the optimizer for the fast_run mode is defined
fast_run = optdb.query(Query(include = ['fast_run']))

# This is how the optimizer for the fast_compile mode is defined
fast_compile = optdb.query(Query(include = ['fast_compile']))

# This is the same as fast_run but no optimizations will replace
# any operation by an inplace version. This assumes, of course,
# that all inplace operations are tagged as 'inplace' (as they
# should!)
fast_run_no_inplace = optdb.query(Query(include = ['fast_run'], exclude = ['inplace']))
fast_run_no_inplace = fast_run.excluding('inplace')








Registering an Optimizer

Let’s say we have a global optimizer called simplify. We can add
it to optdb as follows:

# optdb.register(name, optimizer, order, *tags)
optdb.register('simplify', simplify, 0.5, 'fast_run')





Once this is done, the FAST_RUN mode will automatically include your
optimization (since you gave it the ‘fast_run’ tag). Of course,
already-compiled functions will see no change. The ‘order’ parameter
(what it means and how to choose it) will be explained in
optdb structure below.




Registering a LocalOptimizer

LocalOptimizers may be registered in two ways:


	Wrap them in a Navigator and insert them like a global optimizer
(see previous section).

	Put them in an EquilibriumDB.



Theano defines two EquilibriumDBs where you can put local
optimizations:


	
canonicalize()

	This contains optimizations that aim to simplify the graph:


	Replace rare or esoterical operations with their equivalents using
elementary operations.

	Order operations in a canonical way (any sequence of
multiplications and divisions can be rewritten to contain at most
one division, for example; x*x can be rewritten x**2; etc.)

	Fold constants (Constant(2)*Constant(2) becomes Constant(4))








	
specialize()

	This contains optimizations that aim to specialize the graph:


	Replace a combination of operations with a special operation that
does the same thing (but better).







For each group, all optimizations of the group that are selected by
the Query will be applied on the graph over and over again until none
of them is applicable, so keep that in mind when designing it: check
carefully that your optimization leads to a fixpoint (a point where it
cannot apply anymore) at which point it returns False to indicate its
job is done. Also be careful not to undo the work of another local
optimizer in the group, because then the graph will oscillate between
two or more states and nothing will get done.




optdb structure

optdb contains the following Optimizers and sub-DBs, with the given
priorities and tags:








	Order
	Name
	Description




	0
	merge1
	First merge operation


	1
	canonicalize
	Simplify the graph


	2
	specialize
	Add specialized operations


	49
	merge2
	Second merge operation


	49.5
	add_destroy_handler
	Enable inplace optimizations


	100
	merge3
	Third merge operation





The merge operations are meant to put together parts of the graph that
represent the same computation. Since optimizations can modify the
graph in such a way that two previously different-looking parts of the
graph become similar, we merge at the beginning, in the middle and at
the very end. Technically, we only really need to do it at the end,
but doing it in previous steps reduces the size of the graph and
therefore increases the efficiency of the process.

See previous section for more information about the canonicalize and
specialize steps.

The add_destroy_handler step is not really an optimization. It is
a marker. Basically:


Warning

Any optimization which inserts inplace operations in the
computation graph must appear after the add_destroy_handler
“optimizer”. In other words, the priority of any such optimization
must be >= 50. Failure to comply by this restriction can lead
to the creation of incorrect computation graphs.



The reason the destroy handler is not inserted at the beginning is
that it is costly to run. It is cheaper to run most optimizations
under the assumption there are no inplace operations.




Navigator

WRITEME
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Tips


Reusing outputs

WRITEME




Don’t define new Ops unless you have to

It is usually not useful to define Ops that can be easily
implemented using other already existing Ops. For example, instead of
writing a “sum_square_difference” Op, you should probably just write a
simple function:

from theano import tensor as T

def sum_square_difference(a, b):
    return T.sum((a - b)**2)





Even without taking Theano’s optimizations into account, it is likely
to work just as well as a custom implementation. It also supports all
data types, tensors of all dimensions as well as broadcasting, whereas
a custom implementation would probably only bother to support
contiguous vectors/matrices of doubles...




Use Theano’s high order Ops when applicable

Theano provides some generic Op classes which allow you to generate a
lot of Ops at a lesser effort. For instance, Elemwise can be used to
make elementwise operations easily whereas DimShuffle can be
used to make transpose-like transformations. These higher order Ops
are mostly Tensor-related, as this is Theano’s specialty.




Op Checklist

Use this list to make sure you haven’t forgotten anything when
defining a new Op. It might not be exhaustive but it covers a lot of
common mistakes.

WRITEME
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Unit Testing

Theano relies heavily on unit testing. Its importance cannot be
stressed enough!

Unit Testing revolves around the following principles:


	ensuring correctness: making sure that your Op, Type or Optimization
works in the way you intended it to work. It is important for this
testing to be as thorough as possible: test not only the obvious
cases, but more importantly the corner cases which are more likely
to trigger bugs down the line.

	test all possible failure paths. This means testing that your code
fails in the appropriate manner, by raising the correct errors when
in certain situations.

	sanity check: making sure that everything still runs after you’ve
done your modification. If your changes cause unit tests to start
failing, it could be that you’ve changed an API on which other users
rely on. It is therefore your responsibility to either a) provide
the fix or b) inform the author of your changes and coordinate with
that person to produce a fix. If this sounds like too much of a
burden... then good! APIs aren’t meant to be changed on a whim!



This page is in no way meant to replace tutorials on Python’s unittest
module, for this we refer the reader to the official documentation [http://docs.python.org/library/unittest.html].  We will however
adress certain specificities about how unittests relate to theano.


Unittest Primer

A unittest is a subclass of unittest.TestCase, with member
functions with names that start with the string test.  For
example:

class MyTestCase(unittest.TestCase):
    def test0(self):
        pass
        # test passes cleanly

    def test1(self):
        self.assertTrue(2+2 == 5)
        # raises an exception, causes test to fail

    def test2(self):
        assert 2+2 == 5
        # causes error in test (basically a failure, but counted separately)

    def test2(self):
        assert 2+2 == 4
        # this test has the same name as a previous one,
        # so this is the one that runs.






How to Run Unit Tests ?

Two options are available:


theano-nose

The easiest by far is to use theano-nose which is a command line
utility that recurses through a given directory, finds all unittests
matching a specific criteria and executes them. By default, it will
find & execute tests case in test*.py files whose method name starts
with ‘test’.

theano-nose is a wrapper around nosetests [http://somethingaboutorange.com/mrl/projects/nose/]. You should be
able to execute it if you installed Theano using pip, or if you ran
“python setup.py develop” after the installation. If theano-nose is
not found by your shell, you will need to add Theano/bin to your
PATH environment variable.


Note

In Theano versions <= 0.5, theano-nose was not included.  If you
are working with such a version, you can call nosetests instead
of theano-nose in all the examples below.



Running all unit tests

cd Theano/theano
theano-nose





Running unit tests with standard out

theano-nose -s





Running unit tests contained in a specific .py file

theano-nose <filename>.py





Running a specific unit test

theano-nose <filename>.py:<classname>.<method_name>








Using unittest module

To launch tests cases from within python, you can also use the
functionality offered by the unittest module. The simplest thing
is to run all the tests in a file using unittest.main(). Python’s
built-in unittest module uses metaclasses to know about all the
unittest.TestCase classes you have created.  This call will run
them all, printing ‘.’ for passed tests, and a stack trace for
exceptions. The standard footer code in theano’s test files is:

if __name__ == '__main__':
    unittest.main()





You can also choose to run a subset of the full test suite.

To run all the tests in one or more TestCase subclasses:

suite = unittest.TestLoader()
suite = suite.loadTestsFromTestCase(MyTestCase0)
suite = suite.loadTestsFromTestCase(MyTestCase1)
...
unittest.TextTestRunner(verbosity=2).run(suite)





To run just a single MyTestCase member test function called test0:

MyTestCase('test0').debug()










Folder Layout

“tests” directories are scattered throughout theano. Each tests
subfolder is meant to contain the unittests which validate the .py
files in the parent folder.

Files containing unittests should be prefixed with the word “test”.

Optimally every python module should have a unittest file associated
with it, as shown below. Unittests testing functionality of module
<module>.py should therefore be stored in tests/test_<module>.py:

Theano/theano/tensor/basic.py
Theano/theano/tensor/elemwise.py
Theano/theano/tensor/tests/test_basic.py
Theano/theano/tensor/tests/test_elemwise.py










How to Write a Unittest


Test Cases and Methods

Unittests should be grouped “logically” into test cases, which are
meant to group all unittests operating on the same element and/or
concept. Test cases are implemented as Python classes which inherit
from unittest.TestCase

Test cases contain multiple test methods. These should be prefixed
with the word “test”.

Test methods should be as specific as possible and cover a particular
aspect of the problem. For example, when testing the TensorDot Op, one
test method could check for validity, while another could verify that
the proper errors are raised when inputs have invalid dimensions.

Test method names should be as explicit as possible, so that users can
see at first glance, what functionality is being tested and what tests
need to be added.

Example:

import unittest
class TestTensorDot(unittest.TestCase):
    def test_validity(self):
        # do stuff
        ...
    def test_invalid_dims(self):
        # do more stuff
        ...





Test cases can define a special setUp method, which will get called
before each test method is executed. This is a good place to put
functionality which is shared amongst all test methods in the test
case (i.e initializing data, parameters, seeding random number
generators – more on this later)

class TestTensorDot(unittest.TestCase):
    def setUp(self):
        # data which will be used in various test methods
        self.avals = numpy.array([[1,5,3],[2,4,1]])
        self.bvals = numpy.array([[2,3,1,8],[4,2,1,1],[1,4,8,5]])





Similarly, test cases can define a tearDown method, which will be
implicitely called at the end of each test method.




Checking for correctness

When checking for correctness of mathematical expressions, the user
should preferably compare theano’s output to the equivalent numpy
implementation.

Example:

class TestTensorDot(unittest.TestCase):
    def setUp(self):
        ...

    def test_validity(self):
        a = T.dmatrix('a')
        b = T.dmatrix('b')
        c = T.dot(a,b)
        f = theano.function([a,b],[c])
        cmp = f(self.avals,self.bvals) == numpy.dot(self.avals,self.bvals)
        self.assertTrue(numpy.all(cmp))





Avoid hard-coding variables, as in the following case:

self.assertTrue(numpy.all(f(self.avals,self.bvals)==numpy.array([[25,25,30,28],[21,18,14,25]])))





This makes the test case less manageable and forces the user to update
the variables each time the input is changed or possibly when the
module being tested changes (after a bug fix for example). It also
constrains the test case to specific input/output data pairs. The
section on random values covers why this might not be such a good
idea.

Here is a list of useful functions, as defined by TestCase:


	checking the state of boolean variables: assert,
assertTrue, assertFalse

	checking for (in)equality constraints: assertEqual,
assertNotEqual

	checking for (in)equality constraints up to a given precision (very
useful in theano): assertAlmostEqual,
assertNotAlmostEqual






Checking for errors

On top of verifying that your code provides the correct output, it is
equally important to test that it fails in the appropriate manner,
raising the appropriate exceptions, etc. Silent failures are deadly,
as they can go unnoticed for a long time and a hard to detect
“after-the-fact”.

Example:

class TestTensorDot(unittest.TestCase):
    ...
    def test_3D_dot_fail(self):
        def func():
            a = T.TensorType('float64', (False,False,False)) # create 3d tensor
            b = T.dmatrix()
            c = T.dot(a,b) # we expect this to fail
        # above should fail as dot operates on 2D tensors only
        self.assertRaises(TypeError, func)





Useful function, as defined by TestCase:


	assertRaises






Test Cases and Theano Modes

When compiling theano functions or modules, a mode parameter can be
given to specify which linker and optimizer to use.

Example:

f = T.function([a,b],[c],mode='FAST_RUN')





Whenever possible, unit tests should omit this parameter. Leaving
out the mode will ensure that unit tests use the default mode.
This default mode is set to
the configuration variable config.mode, which defaults to
‘FAST_RUN’, and can be set by various mechanisms (see config).

In particular, the enviromnment variable THEANO_FLAGS
allows the user to easily switch the mode in which unittests are
run. For example to run all tests in all modes from a BASH script,
type this:

THEANO_FLAGS='mode=FAST_COMPILE' theano-nose
THEANO_FLAGS='mode=FAST_RUN' theano-nose
THEANO_FLAGS='mode=DebugMode' theano-nose








Using Random Values in Test Cases

numpy.random is often used in unit tests to initialize large data
structures, for use as inputs to the function or module being
tested. When doing this, it is imperative that the random number
generator be seeded at the be beginning of each unit test. This will
ensure that unittest behaviour is consistent from one execution to
another (i.e always pass or always fail).

Instead of using numpy.random.seed to do this, we encourage users to
do the following:

from theano.tests import unittest_tools

class TestTensorDot(unittest.TestCase):
    def setUp(self):
        unittest_tools.seed_rng()
        # OR ... call with an explicit seed
        unittest_tools.seed_rng(234234) #use only if really necessary!





The behaviour of seed_rng is as follows:


	If an explicit seed is given, it will be used for seeding numpy’s rng.

	If not, it will use config.unittests.rseed (its default value is 666).

	If config.unittests.rseed is set to “random”, it will seed the rng with
None, which is equivalent to seeding with a random seed.



The main advantage of using unittest_tools.seed_rng is that it allows
us to change the seed used in the unitests, without having to manually
edit all the files. For example, this allows the nightly build to run
theano-nose repeatedly, changing the seed on every run (hence achieving
a higher confidence that the variables are correct), while still
making sure unittests are deterministic.

Users who prefer their unittests to be random (when run on their local
machine) can simply set config.unittests.rseed to ‘random’ (see
config).

Similarly, to provide a seed to numpy.random.RandomState, simply use:

rng = numpy.random.RandomState(unittest_tools.fetch_seed())
# OR providing an explicit seed
rng = numpy.random.RandomState(unittest_tools.fetch_seed(1231)) #again not recommended





Note that the ability to change the seed from one nosetest to another,
is incompatible with the method of hard-coding the baseline variables
(against which we compare the theano outputs). These must then be
determined “algorithmically”. Although this represents more work, the
test suite will be better because of it.






Creating an Op UnitTest

A few tools have been developed to help automate the development of
unitests for Theano Ops.


Validating the Gradient

The verify_grad function can be used to validate that the grad
function of your Op is properly implemented. verify_grad is based
on the Finite Difference Method where the derivative of function f
at point x is approximated as:


[image: \frac{\partial{f}}{\partial{x}} = lim_{\Delta \rightarrow 0} \frac {f(x+\Delta) - f(x-\Delta)} {2\Delta}]


verify_grad performs the following steps:


	approximates the gradient numerically using the Finite Difference Method

	calculate the gradient using the symbolic expression provided in the
grad function

	compares the two values. The tests passes if they are equal to
within a certain tolerance.



Here is the prototype for the verify_grad function.

>>> def verify_grad(fun, pt, n_tests=2, rng=None, eps=1.0e-7, abs_tol=0.0001, rel_tol=0.0001):





verify_grad raises an Exception if the difference between the analytic gradient and
numerical gradient (computed through the Finite Difference Method) of a random
projection of the fun’s output to a scalar  exceeds
both the given absolute and relative tolerances.

The parameters are as follows:


	fun: a Python function that takes Theano variables as inputs,
and returns a Theano variable.
For instance, an Op instance with a single output is such a function.
It can also be a Python function that calls an op with some of its
inputs being fixed to specific values, or that combine multiple ops.

	pt: the list of numpy.ndarrays to use as input values

	n_tests: number of times to run the test

	rng: random number generator used to generate a random vector u,
we check the gradient of sum(u*fn) at pt

	eps: stepsize used in the Finite Difference Method

	abs_tol: absolute tolerance used as threshold for gradient comparison

	rel_tol: relative tolerance used as threshold for gradient comparison



In the general case, you can define fun as you want, as long as it
takes as inputs Theano symbolic variables and returns a sinble Theano
symbolic variable:

def test_verify_exprgrad():
    def fun(x,y,z):
        return (x + tensor.cos(y)) / (4 * z)**2

    x_val = numpy.asarray([[1], [1.1], [1.2]])
    y_val = numpy.asarray([0.1, 0.2])
    z_val = numpy.asarray(2)
    rng = numpy.random.RandomState(42)

    tensor.verify_grad(fun, [x_val, y_val, z_val], rng=rng)





Here is an example showing how to use verify_grad on an Op instance:

def test_flatten_outdimNone():
    # Testing gradient w.r.t. all inputs of an op (in this example the op
    # being used is Flatten(), which takes a single input).
    a_val = numpy.asarray([[0,1,2],[3,4,5]], dtype='float64')
    rng = numpy.random.RandomState(42)
    tensor.verify_grad(tensor.Flatten(), [a_val], rng=rng)





Here is another example, showing how to verify the gradient w.r.t. a subset of
an Op’s inputs. This is useful in particular when the gradient w.r.t. some of
the inputs cannot be computed by finite difference (e.g. for discrete inputs),
which would cause verify_grad to crash.

def test_crossentropy_softmax_grad():
    op = tensor.nnet.crossentropy_softmax_argmax_1hot_with_bias
    def op_with_fixed_y_idx(x, b):
        # Input `y_idx` of this Op takes integer values, so we fix them
        # to some constant array.
        # Although this op has multiple outputs, we can return only one.
        # Here, we return the first output only.
        return op(x, b, y_idx=numpy.asarray([0, 2]))[0]

    x_val = numpy.asarray([[-1, 0, 1], [3, 2, 1]], dtype='float64')
    b_val = numpy.asarray([1, 2, 3], dtype='float64')
    rng = numpy.random.RandomState(42)

    tensor.verify_grad(op_with_fixed_y_idx, [x_val, b_val], rng=rng)






Note

Although verify_grad is defined in theano.tensor.basic, unittests
should use the version of verify_grad defined in theano.tests.unittest_tools.
This is simply a wrapper function which takes care of seeding the random
number generator appropriately before calling theano.tensor.basic.verify_grad








makeTester and makeBroadcastTester

Most Op unittests perform the same function. All such tests must
verify that the op generates the proper output, that the gradient is
valid, that the Op fails in known/expected ways. Because so much of
this is common, two helper functions exists to make your lives easier:
makeTester and makeBroadcastTester (defined in module
theano.tensor.tests.test_basic).

Here is an example of makeTester generating testcases for the Dot
product op:

DotTester = makeTester(name = 'DotTester',
                       op = dot,
                       expected = lambda x, y: numpy.dot(x, y),
                       checks = {},
                       good = dict(correct1 = (rand(5, 7), rand(7, 5)),
                                   correct2 = (rand(5, 7), rand(7, 9)),
                                   correct3 = (rand(5, 7), rand(7))),
                       bad_build = dict(),
                       bad_runtime = dict(bad1 = (rand(5, 7), rand(5, 7)),
                                          bad2 = (rand(5, 7), rand(8,3))),
                       grad = dict())





In the above example, we provide a name and a reference to the op we
want to test. We then provide in the expected field, a function
which makeTester can use to compute the correct values. The
following five parameters are dictionaries which contain:


	checks: dictionary of validation functions (dictionary key is a
description of what each function does). Each function accepts two
parameters and performs some sort of validation check on each
op-input/op-output value pairs.  If the function returns False, an
Exception is raised containing the check’s description.

	good: contains valid input values, for which the output should match
the expected output. Unittest will fail if this is not the case.

	bad_build: invalid parameters which should generate an Exception
when attempting to build the graph (call to make_node should
fail).  Fails unless an Exception is raised.

	bad_runtime: invalid parameters which should generate an Exception
at runtime, when trying to compute the actual output values (call to
perform should fail). Fails unless an Exception is raised.

	grad: dictionary containing input values which will be used in the
call to verify_grad



makeBroadcastTester is a wrapper function for makeTester.  If an
inplace=True parameter is passed to it, it will take care of
adding an entry to the checks dictionary. This check will ensure
that inputs and outputs are equal, after the Op’s perform function has
been applied.
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Extending Theano: FAQ and Troubleshooting


I wrote a new Op/Type, and weird stuff is happening...

First, check the Op’s contract and the Type’s contract
and make sure you’re following the rules.
Then try running your program in Using DebugMode.  DebugMode might catch
something that you’re not seeing.




I wrote a new optimization, but it’s not getting used...

Remember that you have to register optimizations with the The optimization database (optdb)
for them to get used by the normal modes like FAST_COMPILE, FAST_RUN,
and DebugMode.




I wrote a new optimization, and it changed my results even though I’m pretty sure it is correct.

First, check the Op’s contract and make sure you’re following the rules.
Then try running your program in Using DebugMode.  DebugMode might
catch something that you’re not seeing.
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Developer Start Guide


Resources

See Community for a list of Theano resources. The
following groups/mailing-lists are especially useful to Theano
contributors: theano-dev [https://groups.google.com/group/theano-dev], theano-buildbot [https://groups.google.com/group/theano-buildbot], and theano-github [https://groups.google.com/group/theano-github].

To get up to speed, you’ll need to


	Learn some non-basic Python to understand what’s going on in some of the
trickier files (like tensor.py).

	Go through the NumPy documentation [http://docs.scipy.org/numpy/].

	Learn to write reStructuredText [http://docutils.sourceforge.net/rst.html] for epydoc [http://epydoc.sourceforge.net/] and Sphinx [http://sphinx.pocoo.org/].

	Learn about how unittest [http://docs.python.org/library/unittest.html] and nose [http://somethingaboutorange.com/mrl/projects/nose/] work






Installation and configuration

To obtain developer access: register with GitHub [http://www.github.com/] and create a fork of Theano [http://www.github.com/Theano/Theano].

This will create your own Theano project on GitHub, referred later
as “YourProfile/Theano”, or “origin”, from which you will be able to
contribute to the original Theano/Theano, also called “central”.


Create a local copy

Clone your fork locally with

git clone git@github.com:YOUR_GITHUB_LOGIN/Theano.git





For this URL to work, you must set your public ssh keys inside your
github account setting [https://github.com/settings/ssh].

From your local repository, your own fork on GitHub will be called “origin”.

Then, add a reference to the original (“central”) Theano repository with

git remote add central git://github.com/Theano/Theano.git





You can choose another name than “central” to reference Theano/Theano
(for instance, NumPy uses “upstream”), but this documentation will stick
to “central.”

You can then test your installation of Theano by following the steps of
Testing your installation.




Using your local copy

To update your library to the latest revision, you should have a local branch
that tracks central/master. You can add one (named “trunk” here) with:

git fetch central
git branch trunk central/master





Once you have such a branch, in order to update it, do:

git checkout trunk
git pull





Keep in mind that this branch should be “read-only”: if you want to
patch Theano, you should work in another branch, like described in the
Development Workflow section below.




Configure Git

On your local machine, you need to configure git with basic informations:

git config --global user.email you@yourdomain.example.com
git config --global user.name "Your Name Comes Here"





You can also instruct git to use color in diff. For this, you need to
add those lines in the file ~/.gitconfig

[color]
   branch = auto
   diff = auto
   interactive = auto
   status = auto










Development Workflow


Start a new local branch

When working on a new feature in your own fork, start from an up-to-date copy
of the master branch (the principal one) of the central repository
(Theano/Theano on GitHub):

git fetch central
git checkout -b my_shiny_feature central/master






Note

This last line is a shortcut for:

git branch my_shiny_feature central/master
git checkout my_shiny_feature










Submit your changes to the central repository

Once your code is ready for others to review, you need to push your
branch to your github fork first:

git push -u origin my_shiny_feature





Then, go to your fork’s github page on the github website, select your
feature branch and hit the “Pull Request” button in the top right
corner.  This will signal the maintainers that you wish to submit your
changes for inclusion in central/master.
If you don’t get any feedback, bug us on the theano-dev mailing list.




Address reviewer comments

Your pull request will be reviewed by members of the core development
team. If your branch is not directly accepted, the reviewers will use
GitHub’s system to add “notes”, either general (on the entire commit),
or “line notes”, relative to a particular line of code.
In order to have the pull request accepted, you may have to answer
the reviewer’s questions, you can do that on GitHub.

You may also have to edit your code to address their concerns. Some
of the usual requests include fixing typos in comments, adding or
correcting comments, adding unit tests in the test suite.  In order to
do that, you should continue your edits in the same branch you used (in
this example, “my_shiny_feature”).  For instance, if you changed your
working branch, you should first:

git checkout my_shiny_feature





Then, edit your code, and test it appropriately (see
Tips for Quality Contributions below), and push it again to your GitHub
fork, like the first time (except the -u option is only needed the
first time):

git push origin my_shiny_feature





The pull request to the central repository will then be automatically
updated by GitHub. However, the reviewers will not be automatically
notified of your revision, so it is advised to reply to the comments on
GitHub, to let them know that you have submitted a fix.






Tips for Quality Contributions


Coding Style Auto Check

In Theano, we use the same coding style as the Pylearn [http://deeplearning.net/software/pylearn/v2_planning/API_coding_style.html]
project, except that we don’t use the numpy docstring standard.
The principal thing to know is that we follow the
PEP 8 [http://www.python.org/dev/peps/pep-0008/] coding style.

We use git hooks provided in the project pygithooks [https://github.com/lumberlabs/pygithooks] to validate that commits
respect pep8. This happens when each user commits, not when we
push/merge to the Theano repository. Github doesn’t allow us to have
code executed when we push to the repository. So we ask all
contributors to use those hooks.

For historic reason, we currently don’t have all files respecting pep8.
We decided to fix everything incrementally. So not all files respect it
now. So we strongly suggest that you use the “increment” pygithooks
config option to have a good workflow. See the pygithooks main page
for how to set it up for Theano and how to enable this option.




Setting up your Editor for PEP8

Here are instructions for Vim and Emacs. If you have similar instructions for other text editors
or IDE, please let us know and we will update this documentation.


Vim

Detection of warnings and errors is done by the pep8 [http://pypi.python.org/pypi/pep8] script
(or flake8 [http://pypi.python.org/pypi/flake8], that also checks for other things, like syntax
errors). Syntax highlighting and general integration into Vim is done by
the Syntastic [https://github.com/scrooloose/syntastic/] plugin for Vim.

To install flake8, simply run:

pip install flake8





You can use easy_install instead of pip, and pep8 instead of
flake8 if you prefer. The important thing is that the flake8 or
pep8 executable ends up in your $PATH.

To install Syntastic, according to its documentation, the easiest way is
to install pathogen.vim [https://github.com/tpope/vim-pathogen] first.

Here’s a relevant extract of pathogen.vim’s installation instructions:


Install to ~/.vim/autoload/pathogen.vim. Or copy and paste:

mkdir -p ~/.vim/autoload ~/.vim/bundle; \
curl -so ~/.vim/autoload/pathogen.vim \
    https://raw.github.com/tpope/vim-pathogen/HEAD/autoload/pathogen.vim





If you don’t have curl, use wget -O instead.

By the way, if you’re using Windows, change all occurrences of ~/.vim
to ~\vimfiles.

Add this to your vimrc:

call pathogen#infect()





Now any plugins you wish to install can be extracted to a subdirectory
under ~/.vim/bundle, and they will be added to the 'runtimepath'.




Now, we can install Syntastic. From the installation instructions:


cd ~/.vim/bundle
git clone https://github.com/scrooloose/syntastic.git





Then reload vim, run :Helptags, and check out :help syntastic.txt.




From now on, when you save into a Python file, a syntax check will be
run, and results will be displayed using Vim’s quickfix [http://vimdoc.sourceforge.net/htmldoc/quickfix.html#quickfix] mechanism
(more precisely, a location-list). A few useful commands are:


	Open the list of errors: :lopen, that can be abbreviated in :lop
(denoted :lop[en]).

	Close that list: :lcl[ose].

	Next error: :lne[xt].

	Previous error: :lp[revious].



Once you fix errors, messages and highlighting will still appear in the
fixed file until you save it again.

We can also configure the ~/.vimrc to make it easier to work with Syntastic.
For instance, to add a summary in the status bar, you can add:

set statusline+=%{SyntasticStatuslineFlag()}





To bind F2 and F3 to navigate to previous and next error, you can add:

map <F2> :lprevious<CR>
map <F3> :lnext<CR>





You can prefix those by autocmd FileType python if you want these
bindings to work only on Python files.




Emacs

There is an excellent system to configure emacs for Python:
emacs-for-python [https://github.com/gabrielelanaro/emacs-for-python]. It gathers many
emacs config into one, and modifies them to behave together nicely. You
can use it to check for pep8 compliance and for Python syntax errors.

To install it on Linux, you can do like this:

cd
git clone https://github.com/gabrielelanaro/emacs-for-python.git ~/.emacs.d/emacs-for-python





Then in your ~/.emacs file, add this:

;; Mandatory
(load-file "~/.emacs.d/emacs-for-python/epy-init.el")
(add-to-list 'load-path "~/.emacs.d/emacs-for-python/") ;; tell where to load the various files

;; Each of them enables different parts of the system.
;; Only the first two are needed for pep8, syntax check.
(require 'epy-setup) ;; It will setup other loads, it is required!
(require 'epy-python) ;; If you want the python facilities [optional]
(require 'epy-completion) ;; If you want the autocompletion settings [optional]
(require 'epy-editing) ;; For configurations related to editing [optional]
;; [newer version of emacs-for-python]
(require 'epy-nose) ;; For shortcut to call nosetests [optional]

;; Define f10 to previous error
;; Define f11 to next error
(require 'epy-bindings) ;; For my suggested keybindings [optional]

;; Some shortcut that do not collide with gnome-terminal,
;; otherwise, "epy-bindings" define f10 and f11 for them.
(global-set-key [f2] 'flymake-goto-prev-error)
(global-set-key [f3] 'flymake-goto-next-error)

;; Next two lines are the checks to do. You can add more if you wish.
(epy-setup-checker "pyflakes %f") ;; For python syntax check
(epy-setup-checker "pep8 -r %f") ;; For pep8 check






Note

The script highlights problematic lines. This can make part of the
line not readable depending on the background. To replace the line
highlight by an underline, add this to your emacs configuration
file:

;; Make lines readable when there is an warning [optional]
(custom-set-faces
‘(flymake-errline ((((class color)) (:underline “red”))))
‘(flymake-warnline ((((class color)) (:underline “yellow”)))))








Unit tests

When you submit a pull request, your changes will automatically be
tested via Travis-CI. This will post the results of the tests with a
little icon next to your commit. A yellow circle means the tests are
running.  A red X means the tests failed and a green circle means the
tests passed.

Just because the tests run automatically does not mean you shouldn’t
run them yourself to make sure everything is all right.  You can run
only the portion you are modifying to go faster and have travis to
make sure there are no global impacts.

Also, if you are changing GPU code, travis doesn’t test that, because
there are no GPUs on the test nodes.

To run the test suite with the default options, you can follow the
instructions of Testing your installation.

Each night we execute all the unit tests automatically, with several
sets of options. The result is sent by email to the theano-buildbot [https://groups.google.com/group/theano-buildbot]
mailing list.

For more detail, see The nightly build/tests process.

To run all the tests with the same configuration as the buildbot, run
this script:

theano/misc/do_nightly_build





This script accepts arguments that it forwards to nosetests. You can
run only some tests or enable pdb by giving the equivalent nosetests
parameters.






More Advanced Git Usage

You can find information and tips in the numpy development [http://docs.scipy.org/doc/numpy/dev/gitwash/development_workflow.html]
page. Here are a few.


Cleaning up branches

When your pull request has been merged, you can delete the branch from
your GitHub fork’s list of branches. This is useful to avoid having too
many branches staying there. Deleting this remote branch is achieved
with:

git push origin :my_shiny_feature





This lines pushes to the “origin” repository (your fork of Theano on
GitHub), into the branch “my_shiny_feature”, an empty content (that’s
why there is nothing before the colon), effectively removing it.

The branch will still be present in your local clone of the repository.
If you want to delete it from there, too, you can run:

git branch -d my_shiny_feature








Amending a submitted pull request

If you want to fix a commit already submitted within a pull request
(e.g. to fix a small typo), before the pull request is accepted, you can
do it like this to keep history clean:

git checkout my_shiny_feature
git commit --amend
git push origin my_shiny_feature:my_shiny_feature





Do not abuse that command, and please use it only when there are only
small issues to be taken care of. Otherwise, it becomes difficult to
match the comments made by reviewers with the new modifications.
In the general case, you should stick with the approach described above.




Cleaning up history

Sometimes you may have commits in your feature branch that
are not needed in the final pull request. There is a page [http://sandofsky.com/blog/git-workflow.html] that talks about
this. In summary:


	Commits to the trunk should be a lot cleaner than commits to your
feature branch; not just for ease of reviewing but also
because intermediate commits can break blame (the bisecting tool).

	git merge –squash will put all of the commits from your feature branch into one commit.

	There are other tools that are useful if your branch is too big for one squash.






Add another distant repository

To collaborate with another user on some feature he is developing, and
that is not ready for inclusion in central, the easiest way is to use a
branch of their Theano fork (usually on GitHub).

Just like we added Theano/Theano as a remote repository, named
“central”, you can add (on your local machine) a reference to their fork
as a new remote repository. REPO_NAME is the name you choose to name
this fork, and GIT_REPO_PATH is the URL of the fork in question.

git remote add REPO_NAME GIT_REPO_PATH





Then, you can create a new local branch (LOCAL_BRANCH_NAME) based on
a specific branch (REMOTE_BRANCH_NAME) from the remote repository
(REPO_NAME):

git checkout -b LOCAL_BRANCH_NAME REPO_NAME/REMOTE_BRANCH_NAME










Other tools that can help you



	cProfile [http://docs.python.org/library/profile.html]: time profiler that work at function level.

	Yep [http://pypi.python.org/pypi/yep]: A module for profiling compiled extensions.

	autopep8 [http://pypi.python.org/pypi/autopep8/]: A tool that automatically formats Python code to conform to the PEP 8 style guide.

	line_profiler [http://pypi.python.org/pypi/line_profiler/]: Line-by-line profiler.

	memory_profiler [http://fseoane.net/blog/2012/line-by-line-report-of-memory-usage/]: memory profiler

	runsnake [http://www.vrplumber.com/programming/runsnakerun/]: Gui for cProfile(time profiler) and Meliae(memory profiler)

	Guppy [https://pypi.python.org/pypi/guppy/]: Supports object and heap memory sizing, profiling and debugging.

	hub [https://github.com/defunkt/hub]: A tool that adds github commands to the git command line.

	git pull-requests [http://www.splitbrain.org/blog/2011-06/19-automate_github_pull_requests]: Another tool for git/github command line.
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Glossary


	Apply

	Instances of Apply represent the application of an Op
to some input Variable (or variables) to produce some output
Variable (or variables).  They are like the application of a [symbolic]
mathematical function to some [symbolic] inputs.

	Broadcasting

	Broadcasting is a mechanism which allows tensors with
different numbers of dimensions to be used in element-by-element
(elementwise) computations.  It works by
(virtually) replicating the smaller tensor along
the dimensions that it is lacking.

For more detail, see Broadcasting in Theano vs. Numpy, and also
* SciPy documentation about numpy’s broadcasting [http://www.scipy.org/EricsBroadcastingDoc]
* OnLamp article about numpy’s broadcasting [http://www.onlamp.com/pub/a/python/2000/09/27/numerically.html]



	Constant

	A variable with an immutable value.
For example, when you type

>>> x = tensor.ivector()
>>> y = x + 3





Then a constant is created to represent the 3 in the graph.

See also: gof.Constant



	Elementwise

	An elementwise operation f on two tensor variables M and N
is one such that:

f(M, N)[i, j] == f(M[i, j], N[i, j])

In other words, each element of an input matrix is combined
with the corresponding element of the other(s). There are no
dependencies between elements whose [i, j] coordinates do
not correspond, so an elementwise operation is like a scalar
operation generalized along several dimensions.  Elementwise
operations are defined for tensors of different numbers of dimensions by
broadcasting the smaller ones.



	Expression

	See Apply

	Expression Graph

	A directed, acyclic set of connected Variable and
Apply nodes that express symbolic functional relationship
between variables.  You use Theano by defining expression graphs, and
then compiling them with theano.function.

See also Variable, Op, Apply, and
Type, or read more about Graph Structures.



	Destructive

	An Op is destructive (of particular input[s]) if its
computation requires that one or more inputs be overwritten or
otherwise invalidated.  For example, inplace Ops are
destructive.  Destructive Ops can sometimes be faster than
non-destructive alternatives.  Theano encourages users not to put
destructive Ops into graphs that are given to theano.function,
but instead to trust the optimizations to insert destructive ops
judiciously.

Destructive Ops are indicated via a destroy_map Op attribute. (See
gof.Op.



	Graph

	see expression graph

	Inplace

	Inplace computations are computations that destroy their inputs as a
side-effect.  For example, if you iterate over a matrix and double
every element, this is an inplace operation because when you are done,
the original input has been overwritten.  Ops representing inplace
computations are destructive, and by default these can only be
inserted by optimizations, not user code.

	Linker

	Part of a function Mode – an object responsible for ‘running’
the compiled function.  Among other things, the linker determines whether computations are carried out with C or Python code.

	Mode

	An object providing an optimizer and a linker that is
passed to theano.function.  It parametrizes how an expression
graph is converted to a callable object.

	Op

	The .op of an Apply, together with its symbolic inputs
fully determines what kind of computation will be carried out for that
Apply at run-time.  Mathematical functions such as addition
(T.add) and indexing  x[i] are Ops in Theano.  Much of the
library documentation is devoted to describing the various Ops that
are provided with Theano, but you can add more.

See also Variable, Type, and Apply,
or read more about Graph Structures.



	Optimizer

	An instance of Optimizer, which has the capacity to provide
an optimization (or optimizations).

	Optimization

	A graph transformation applied by an optimizer during
the compilation of a graph by theano.function.

	Pure

	An Op is pure if it has no destructive side-effects.

	Storage

	The memory that is used to store the value of a Variable.  In most
cases storage is internal to a compiled function, but in some cases
(such as constant and shared variable the storage is not internal.

	Shared Variable

	A Variable whose value may be shared between multiple functions.  See shared and theano.function.

	theano.function

	The interface for Theano’s compilation from symbolic expression graphs
to callable objects.  See function.function().

	Type

	The .type of a
Variable indicates what kinds of values might be computed for it in a
compiled graph.
An instance that inherits from Type, and is used as the
.type attribute of a Variable.

See also Variable, Op, and Apply,
or read more about Graph Structures.



	Variable

	The the main data structure you work with when using Theano.
For example,

>>> x = theano.tensor.ivector()
>>> y = -x**2





x and y are both Variables, i.e. instances of the Variable class.

See also Type, Op, and Apply,
or read more about Graph Structures.



	View

	Some Tensor Ops (such as Subtensor and Transpose) can be computed in
constant time by simply re-indexing their inputs.   The outputs from
[the Apply instances from] such Ops are called Views because their
storage might be aliased to the storage of other variables (the inputs
of the Apply).  It is important for Theano to know which Variables are
views of which other ones in order to introduce Destructive
Ops correctly.

View Ops are indicated via a view_map Op attribute. (See
gof.Op.
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Links

This page lists links to various resources.


Theano requirements


	git [http://git-scm.com/]: A distributed revision control system (RCS).

	nosetests [http://somethingaboutorange.com/mrl/projects/nose/]: A system for unit tests.

	numpy [http://numpy.scipy.org/]: A library for efficient numerical computing.

	python [http://www.python.org]: The programming language Theano is for.

	scipy [http://scipy.org/]: A library for scientific computing.






Libraries we might want to look at or use

This is a sort of memo for developers and would-be developers.


	autodiff [http://www.autodiff.org]: Tools for automatic differentiation.

	boost.python [http://www.boost.org/doc/libs/1_38_0/libs/python/doc/index.html]: An interoperability layer between Python and C++

	cython [http://www.cython.org/]: A language to write C extensions to Python.

	liboil [http://liboil.freedesktop.org/wiki/]: A library for CPU-specific optimization.

	llvm [http://llvm.org/]: A low-level virtual machine we might want to use for compilation.

	networkx [http://networkx.lanl.gov/]: A package to create and manipulate graph structures.

	pycppad [http://www.seanet.com/~bradbell/pycppad/index.xml]: Python bindings to an AD package in C++.

	pypy [http://codespeak.net/pypy/dist/pypy/doc/]: Optimizing compiler for Python in Python.

	shedskin [http://shed-skin.blogspot.com/]: An experimental (restricted-)Python-to-C++ compiler.

	swig [http://www.swig.org/]: An interoperability layer between Python and C/C++

	unpython [http://code.google.com/p/unpython/]: Python to C compiler.
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Internal Documentation

If you’re feeling ambitious, go fix some pylint
<http://lgcm.iro.umontreal.ca/auto_theano_pylint/pylint_global.html> errors!



	Release

	Developer Start Guide MOVED!

	LISA Labo specific instructions
	Tips for running at LISA

	Tips for running on a cluster





	Running Theano on Mammouth

	Documentation Documentation AKA Meta-Documentation
	How to build documentation

	Use ReST for documentation

	How to link to class/function documentations

	How to add TODO comments in Sphinx documentation

	How documentation is built on deeplearning.net

	pylint

	The nightly build/tests process

	TO WRITE





	Python booster
	Non-Basic Python features





	How to make a release
	Update files

	Get a fresh copy of the repository

	Update the version number

	Tag the release

	Generate and upload the package

	Generate and upload the Windows installer

	Announce the release













          

      

      

    


    
         Copyright 2008--2015, LISA lab.
      Last updated on Mar 27, 2015.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Theano 0.7 documentation 

          	Internal Documentation 
 
      

    


    
      
          
            
  
Release

Having a release system has many benefits. First and foremost, it makes trying
out Theano easy. You can install a stable version of Theano, without having to
worry about the current state of the repository.  While we usually try NOT to
break the trunk, mistakes can happen. This also greatly simplifies the
installation process: mercurial is no longer required and certain python
dependencies can be handled automatically (numpy for now, maybe pycuda, cython
later).

The Theano release plan is detailed below. Comments and/or suggestions are
welcome on the mailing list.


	We will perform a monthly release of Theano. These will be “lightweight”
releases and will include everything that was done in the last month. All
outstanding feature requests are pushed back to the following month, so as
not to delay the current release.



	Asynchronous releases will only be made when a bug generating incorrect
output is discovered and fixed.



	Each release must satisfy the following criteria. Non-compliance will
result in us delaying or skipping the release in question.



	No regression errors.



	No known, silent errors.



	No errors giving incorrect results.



	No test errors/failures, except for known errors.



	Known errors should not be used to encode “feature wish lists”, as
is currently the case.

	Incorrect results should raise errors and not known errors (this
has always been the case)

	All known errors should have a ticket and a reference to that
ticket in the error message.








	All commits should have been reviewed, to ensure none of the above
problems are introduced.










	The release numbers will follow the X.Y.Z scheme:


	We update Z by 1 for each lightweight release.

	We update Y for bug fixes, interface changes and/or significant features
we wish to publicize.

	The Theano v1.0.0 release will be made when the interface is deemed
stable enough and covers most of numpy’s interface.





	The trunk will be tagged on each release.



	Each release will be uploaded to pypi.python.org, mloss.org and freshmeat.net



	Release emails will be sent to theano-users, theano-announce, numpy-discussion@scipy.org and scipy-user@scipy.org .





Optional:


	A 1-week scrum might take place before a release, in order to fix bugs
which would otherwise prevent a release.



	Occasional deadlines might cause us to skip a release.

	Everybody can (and should) participate, even people on the mailing
list.

	The scrum should encourage people to finish what they have already
started (missing documentation, missing test, ...). This should help
push out new features and keep the documentation up to date.

	If possible, aim for the inclusion of one new interesting feature.

	Participating in the scrum should benefit all those involved, as you
will learn more about our tools and help develop them in the process. A
good indication that you should participate is if you have a need for a
feature which is not yet implemented.
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Developer Start Guide MOVED!

The developer start guide moved.
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LISA Labo specific instructions


Tips for running at LISA

Shell configuration files /opt/lisa/os/.local.{bash,csh}rc should define
THEANORC to include /opt/lisa/os/.local.theanorc as a
configuration file.

/opt/lisa/os/.local.theanorc should include the right default values for
the lab, in particular, blas.ldflags should contain ‘-lgoto’.




Tips for running on a cluster


	Running Theano on Mammouth

	For instructions on running Theano on the mammouth cluster.
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Running Theano on Mammouth

To run Theano on the Mammouth cluster, follow these simple steps:



	Make sure to source Fred’s .local.bashrc file. It contains all
the goodies for using the latest and greatest (optimized) libraries
(numpy, scipy, etc.)

>>> source /home/bastienf/.local.bashrc





Perhaps even put this in your .bashrc



	set config.blas.ldflags to '-lmkl -lguide -fopenmp'
(see config to know how)

Note: the -lguide flag works, however the fix should probably be considered temporary.
Intel has deprecated libguide.so in favor of the newer library libiomp5.so. However,
both libraries are mutually exclusive and one component (theano, numpy or scipy?) already
seems to be using libguide.so (hence -liomp5 causes a linking error when compiling thunks)
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Documentation Documentation AKA Meta-Documentation


How to build documentation

Let’s say you are writing documentation, and want to see the sphinx [http://sphinx.pocoo.org/] output before you push it.
The documentation will be generated in the html directory.

cd Theano/
python ./doc/scripts/docgen.py





If you don’t want to generate the pdf, do the following:

cd Theano/
python ./doc/scripts/docgen.py --nopdf





For more details:

$ python doc/scripts/docgen.py --help
Usage: doc/scripts/docgen.py [OPTIONS]
  -o <dir>: output the html files in the specified dir
  --rst: only compile the doc (requires sphinx)
  --nopdf: do not produce a PDF file from the doc, only HTML
  --help: this help








Use ReST for documentation



	ReST [http://docutils.sourceforge.net/rst.html] is standardized.
epydoc is not. trac wiki-markup is not.
This means that ReST can be cut-and-pasted between epydoc, code, other
docs, and TRAC.  This is a huge win!

	ReST is extensible: we can write our own roles and directives to automatically link to WIKI, for example.

	ReST has figure and table directives, and can be converted (using a standard tool) to latex documents.

	No text documentation has good support for math rendering, but ReST is closest: it has three renderer-specific solutions (render latex, use latex to build images for html, use itex2mml to generate MathML)









How to link to class/function documentations

Link to the generated doc of a function this way:

:func:`perform`





For example:

of the :func:`perform` function.





Link to the generated doc of a class this way:

:class:`RopLop_checker`





For example:

The class :class:`RopLop_checker`, give the functions





However, if the link target is ambiguous, Sphinx will generate warning or errors.




How to add TODO comments in Sphinx documentation

To include a TODO comment in Sphinx documentation, use an indented block as
follows:

.. TODO: This is a comment.
.. You have to put .. at the beginning of every line :(
.. These lines should all be indented.





It will not appear in the output generated.








How documentation is built on deeplearning.net

The server that hosts the theano documentation runs a cron job roughly every
2 hours that fetches a fresh Theano install (clone, not just pull) and
executes the docgen.py script. It then over-writes the previous docs with the
newly generated ones.

Note that the server will most definitely use a different version of sphinx
than yours so formatting could be slightly off, or even wrong. If you’re
getting unxpected results and/or the auto-build of the documentation seems
broken, please contact theano-dev@.

In the future, we might go back to the system of auto-refresh on push (though
that might increase the load of the server quite significantly).




pylint

pylint output is not autogenerated anymore.

Pylint documentation is generated using pylintrc file: Theano/doc/pylintrc

You can see a list of all pylint messages [http://www.logilab.org/card/pylintfeatures].




The nightly build/tests process

The user lisa runs a cronjob on the computer ceylon,  this
happens nightly. (To have the crontab executed, the lisa user must
be logged into ceylon, Fred leaves a shell open for that.)

The cronjob executes a script that download/update the repo of Theano,
Pylearn, Pylearn2 and the Deep Learning Tutorial, then run their tests
script under */misc/do_nightly_build. Those script tests the
project under various condition. The cron job also run some tests in
Python 2.4 and Python 3.3 for Theano.

The output is emailed automatically to the theano-buildbot [https://groups.google.com/group/theano-buildbot] mailing list.




TO WRITE

There is other stuff to document here, e.g.:



	We also want examples of good documentation, to show people how to write ReST.
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Python booster

This page [http://wordaligned.org/articles/essential-python-reading-list] will
give you a warm feeling in your stomach.


Non-Basic Python features

Theano doesn’t use your grandfather’s python.



	properties

a specific attribute that has get and set methods which python automatically invokes.

See [http://www.python.org/doc/newstyle/ New style classes].



	static methods vs. class methods vs. instance methods



	Decorators:

@f
def g():
  ...





runs function f before each invocation of g.
See PEP 0318 [http://www.python.org/dev/peps/pep-0318/].
staticmethod is a specific decorator, since python 2.2



	__metaclass__ is kinda like a decorator for classes. It runs the metaclass __init__ after the class is defined



	setattr + getattr + hasattr



	*args is a tuple like argv in C++, **kwargs is a keyword args version



	pass is no-op.



	functions (function objects) can have attributes too. This technique
is often used to define a function’s error messages.

def f(): return f.a
f.a = 5
f() # returns 5







	Warning about mutual imports:


	script a.py file defined a class A.

	script a.py imported file b.py

	file b.py imported a, and instantiated a.A()

	script a.py instantiated its own A(), and passed it to a function in b.py

	that function saw its argument as being of type __main__.A, not a.A.



Incidentally, this behaviour is one of the big reasons to put autotests in
different files from the classes they test!

If all the test cases were put into <file>.py directly, then during the test
cases, all <file>.py classes instantiated by unit tests would have type
__main__.<classname>, instead of type <file>.<classname>.  This should never
happen under normal usage, and can cause problems (like the one you are/were
experiencing).














          

      

      

    


    
         Copyright 2008--2015, LISA lab.
      Last updated on Mar 27, 2015.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Theano 0.7 documentation 

          	Internal Documentation 
 
      

    


    
      
          
            
  
How to make a release


Update files

Update the NEWS.txt and move the old stuff in the HISTORY.txt file.
To update the NEWS.txt file, check all ticket closed for this release
and all commit log messages. Update the index.txt News section.

Update the “Vision”/”Vision State” in the file
Theano/doc/introduction.txt.




Get a fresh copy of the repository

Clone the code:

git clone git@github.com:Theano/Theano.git Theano-0.X





It does not have to be in your PYTHONPATH.




Update the version number

Edit setup.py to contain the newest version number

cd Theano-0.X
vi setup.py     # Edit the MAJOR, MINOR, MICRO and SUFFIX





conf.py in the doc/ directory should be updated in the following ways:



	Change the version and release variables to new version number.

	Change the upper copyright year to the current year if necessary.






Update the year in the Theano/LICENSE.txt file too, if necessary.

NEWS.txt usually contains the name and date of the release, change them
too.

Update the code and the documentation for the theano flags
warn.ignore_bug_before to accept the new version. You must modify the
file theano/configdefaults.py and doc/library/config.txt.




Tag the release

You will need to commit the previous changes, tag the resulting version, and
push that into the original repository. The syntax is something like the
following:

git commit -m "Modifications for 0.X.Y release" setup.py doc/conf.py NEWS.txt HISTORY.txt theano/configdefaults.py doc/library/config.txt
git tag -a rel-0.X.Y
git push
git push --tags





The documentation will be automatically regenerated in the next few hours.




Generate and upload the package

For release candidates, only upload on PyPI.


On PyPI

Now change ISRELEASED in setup.py to True.

Finally, use setuptools to register and upload the release:

python setup.py register sdist --formats=gztar,zip upload





This command register and uploads the package on pypi.python.org. To be able
to do that, you must register on PyPI (you can create an new account, or use
OpenID), and be listed among the “Package Index Owners” of Theano.

There is a bug in some versions of distutils that raises a
UnicodeDecodeError if there are non-ASCII characters in NEWS.txt. You
would need to change NEWS.txt so it contains only ASCII characters (the
problem usually comes from diacritics in people’s names).




On freecode (formaly freshmeat)

Theano project page at freecode is here [http://freecode.com/projects/theano].
The package itself is not uploaded to freecode, the only thing to update is
the description and tags.

ou can request the rights to add a release from an admin (for instance Fred),
pointing them to the “roles” page [http://freecode.net/projects/theano/roles]. Then, create a new release from
the “releases” page [http://freecode.net/projects/theano/releases].




On mloss.org

Project page is at http://mloss.org/software/view/241/.
Account jaberg is listed as submitter.


	log in as jaberg to mloss

	search for theano and click the logo

	press ‘update this project’ on the left and change





	the version number

	the download link

	the description of what has changed







	press save



Make sure the “what’s changed” text isn’t too long because it will show up on
the front page of mloss.  You have to indent bullet lines by 4 spaces I think in
the description.

You can “update this project” and save lots of times to get the revision text
right. Just do not change the version number.




Finally

Change ISRELEASED back to False.






Generate and upload the Windows installer

We are now able to build and distribute an MSI installer for Windows,
assuming that Anaconda is the installed Python distribution. This
installer is generated by WiX [http://wixtoolset.org/] from an XML file, stored in the
Theano-wininstaller [https://github.com/Theano/Theano-wininstaller]
Git repository.


	Install WiX [http://wixtoolset.org/] if it is not already installed.



	On a Windows machine, checkout the Theano-wininstaller repository:

git checkout https://github.com/Theano/Theano-wininstaller.git







	In Theano-wininstaller\src, create a new
theano_installer_<version>.wxs from the previous one. We want to
keep a history of these files, as they contain globally unique IDs.



	Change the strings and GUIDs appropriately, see the WiX tutorial [http://wix.tramontana.co.hu/tutorial/upgrades-and-modularization]
for a reference.



	Compile the .wxs file following the instructions in it, it will be something like:

candle.exe theano_installer_<version>.wxs
light.exe -ext WixUIExtension theano_installer_<version>.wixobj





This will generate a theano_installer_<version>.msi file in src.



	Test it by trying to install and uninstall it. It can be done by
double-clicking on it, then uninstalling it from the Windows control
panel, or (more easily) from the command line, which also allows to
save the logs (use the *v modifier to increase verbosity):

msiexec /i <file>.msi [/l[*v] install.log]
msiexec /x <file>.msi [/l[*v] uninstall.log]







	When the test works, copy theano_installer_<version>.msi
into Theano-wininstaller\bin, overwrite
bin\theano_installer_latest.msi with another copy, then add the new
files into the Git repository, and push to master:

copy src\theano_installer_<version>.msi bin\
copy /y src\theano_installer_<version>.msi bin\theano_installer_latest.msi
git add src\theano_installer_<version>.wxs
git add bin\theano_installer_<version>.msi
git add bin\theano_installer_latest.msi
git commit
git push












Announce the release

Generate an e-mail from the template in in EMAIL.txt, including content
from NEWS.txt, and send it to the following mailing lists:


	theano-users

	theano-announce

	numpy-discussion@scipy.org

	scipy-user@scipy.org

	G+, Scientific Python: https://plus.google.com/communities/108773711053400791849



For release candidates, only e-mail:


	theano-announce

	theano-dev

	theano-users









          

      

      

    


    
         Copyright 2008--2015, LISA lab.
      Last updated on Mar 27, 2015.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Theano 0.7 documentation 
 
      

    


    
      
          
            
  
Proposals for new/revised features



	Proposal for pfunc  Function Interface [DONE]

	Automatic updates

	Optimization Patterns

	Random Numbers, Random Variables and Compiling Graphical Models

	Proposal for gradient wrt complex variables
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Proposal for pfunc  Function Interface [DONE]


Note

This proposal was implemented some time around summer 2009, and merged into
the trunk around new years 2010.



Following discussion on theano-dev (titled TheanoObject), the following
changes are proposed to make function-construction calls more
readable and intuitive, and to make it easier to share values between
functions.

The strategy is to


	introduce a new kind of Variable (SharedVariable) that has a container
associated with it, and can allow multiple functions to share a value.

	introduce a class called Param to serve a role similar to that of In,

	introduce a friendlier version of function (tentative name pfunc),



The following code gives a very quick idea of what is being proposed:

..code-block:: python


a = lscalar()
b = shared(1) #NEW: create a shared variable

f1 = pfunc([a], a+b)
f2 = pfunc([Param(a, default=44)], a + b, updates={b: b + 1})

b.value # -> 1

f1(3)   # -> 4
f2(3)   # -> 4 (but update b.value with += 1)
b.value # -> 2

f1(3)   # -> 5

b.value = 0
f1(3)   # -> 3





Declaring a Shared Variable

The proposal is for two new ways of creating a shared variable:

class SharedVariable(Variable):
    """
    Variable with a value that is (defaults to being) shared between functions that it appears in.
    """

    def __init__(self, name, type, value, strict):
        """
        :param name: The name for this variable (see `Variable`).

        :param type: The type for this variable (see `Variable`).

        :param value: A value to associate with this variable (a new container will be created).

        :param strict: True -> assignments to .value will not be cast or copied, so they must
        have the correct type.

        :param container: The container to use for this variable. Illegal to pass this as well
        as a value.

        For more user-friendly constructor, see `shared`

        """
        ...



    value = property(...)
    """Read/write the non-symbolic value associated with this SharedVariable.

    If the SharedVariable is shared, changes to this value will be visible to all functions using
    this SharedVariable.  If this SharedVariable is not shared, a change will not be visible to
    functions that were created before the change.

    """

def shared(value, name=None, strict=False, **kwargs):
    """Return a SharedVariable Variable, initialized with a copy or reference of `value`.

    This function iterates over constructor functions (see `shared_constructor`) to find a
    suitable SharedVariable subclass.

    :note:
    By passing kwargs, you effectively limit the set of potential constructors to those that
    can accept those kwargs.

    """
    ...





The function shared is a factory-method intended for end-users.

Direct construction of a SharedVariable is probably not going to be a common
pattern, it will be more common to subclass it (i.e. TensorSharedVariable,
SparseSharedVariable, etc.) and to register a constructor so that these
subclasses will be instantiated by the shared factory method.

A SharedVariable instance is meant to change over the duration of a program,
either because of the updates of a function call, or because of direct
assignment to its .value field.
At any time, the .value field can be be used to access the current value
associated with the shared value.




Using SharedVariables as pfunc Parameters

A SharedVariable instance has a value property that can be used to get and
set the value associated with that shared variable in all the pfunc
functions that use it.

a = tensor.lscalar()
b = shared(7)

# create two functions that use `b` as an implicit input
f1 = pfunc([a], a + b)
f2 = pfunc([a], a * b)

f1(5) # -> 12
b.value = 8    # modify the shared variable's value

f1(5) # -> 13   # the new value is reflected in any compiled functions
f2(4) # -> 32   # f2 uses the latest value in b's container





However, SharedVariables cannot be used as inputs to theano functions.
This is because doing it may yield code that would be either ambiguous, or
prone to easy mistakes (e.g. accidentally overwriting the content of a shared
variable).




Param and pfunc

The examples above give the general flavour of what pfunc and Param are for.
Their signatures are below.
Corner cases and exotic examples can be found in the tests.

def pfunc(params, outputs, mode=None, givens=None, updates=None)
    """Function-constructor for graphs with shared variables.

    :type params: list of either Variable or Param instances.
    :param params: function parameters, these are not allowed to be shared
    variables

    :type outputs: list of Variables or Out instances
    :param outputs: expressions to compute

    :param mode: compilation mode

    :type updates: iterable over pairs (shared_variable, new_expression). List, tuple or dict.
    :param updates: update the values for SharedVariable inputs according to these expressions

    :rtype: theano.compile.Function
    :returns: a callable object that will compute the outputs (given the inputs)
    and update the implicit function arguments according to the `updates`.

    """
    ...





class Param(object):
    def __init__(self, variable, default=None, mutable=False, strict=False):
        """
        :param variable: A node in an expression graph to set with each function call.

        :param default: The default value to use at call-time (can also be a Container where
        the function will find a value at call-time.)

        :param name: A string to identify this parameter from function kwargs.

        :param mutable: True -> function is allowed to modify this argument.

        :param strict: False -> function arguments may be copied or cast to match the
        type required by the parameter `variable`.  True -> function arguments must exactly match the type
        required by `variable`.

        :param implicit: see help(theano.io.In)

        """





Note that if some update value is not a variable, it will be cast into
a SharedVariable using the shared function. This ensures it is
properly taken into account to build the Theano function underlying the
pfunc. A consequence of this is that if this update value is mutable
(e.g. a Numpy array), it may be modified after the function is created.




NNet Example

Of course there are lots of ways to write the following code, but this is one
simple one.

import numpy, theano

from pfunc import pfunc
from sharedvalue import shared
from theano import tensor
from theano.tensor.nnet import sigmoid

class NNet(object):

    def __init__(self,
            input = tensor.dvector('input'),
            target = tensor.dvector('target'),
            n_input=1, n_hidden=1, n_output=1, lr=1e-3, **kw):
        super(NNet, self).__init__(**kw)

        self.input = input
        self.target = target
        self.lr = shared(lr, 'learning_rate')
        self.w1 = shared(numpy.zeros((n_hidden, n_input)), 'w1')
        self.w2 = shared(numpy.zeros((n_output, n_hidden)), 'w2')

        self.hidden = sigmoid(tensor.dot(self.w1, self.input))
        self.output = tensor.dot(self.w2, self.hidden)
        self.cost = tensor.sum((self.output - self.target)**2)

        self.sgd_updates = {
                    self.w1: self.w1 - self.lr * tensor.grad(self.cost, self.w1),
                    self.w2: self.w2 - self.lr * tensor.grad(self.cost, self.w2)}

        self.sgd_step = pfunc(
                params = [self.input, self.target],
                outputs = [self.output, self.cost],
                updates = self.sgd_updates)

        self.compute_output = pfunc([self.input],  self.output)

        self.output_from_hidden = pfunc([self.hidden], self.output)
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Automatic updates

The Module version of RandomStreams could arrange for the automatic update of
certain inputs (such as the random number generators) at the time of make(), so
that certain obvious patterns would work:

>>> rs = RandomStreams()
>>> u = rs.uniform(...)
>>> f = theano.function([], u)
>>> assert not numpy.all(f() == f())





Unfortunately, with shared variables this does not work!  Function needs to be
told which shared variables to update.  The current workaround is to do this:

>>> theano.function([], u, updates=rs.updates())





or this:

>>> theano.function([], u, updates=[u.update])





But it is all too easy to forget to do either of these workarounds, and
accidentally run a program whose random numbers are the same in every call.


Proposal

Add an optional default_update attribute to Shared variables. This will be
consulted by function.  If no update expression is given for this variable in
the updates list, then this default will be inserted.  Note well: a value of None for the
default_update means to update with a value of None!  To have no default update,
make sure that the default_update attribute is not defined.

Add an optional argument to function: no_default_updates.  This argument defaults to
False, which results in the current semantics.
A True value here would mean “ignore all default_update expressions”, and this
would be useful for disabling implicit behaviour.
A list of shared variables here would mean to ignore the
default_update_expressions in these specific variables.




Alternatives

Consider a singleton ‘NOUPDATE’ object that can be used as a pseudo-expression
in the update list.  This doesn’t introduce a new keyword argument, which makes
it slightly more awkward to document in theano.function.  Really though, I have
no strong feelings between this and the no_updates paramter.
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Optimization Patterns


Motivation

Theano optimizations are organized at high level,
but canonicalization and specialization (C&S) are a mess.  It is difficult to know how a graph will
be optimized, or to know in which order optimizations will be performed.
C&S is also slow because of the guess-and-check nature of node optimization within equilibrium
optimizers (VERIFY THIS BY PROFILING).
C&S functions are also very difficult and tedious to write because of
symmetries in the graph, and because of the lack of standard Op names
(e.g. T.add, T.and_, and T._shape).  Gemm and the advanced_indexing -> xent
optimization are particularly tricky examples.

Defining a sort of regexp-like approach for describing graph substitutions would ideally be
less error-prone, less tedious, more efficient to evaluate, easier to document, and all-round
better.




Proposal

In a nutshell: revisit the PatternSub and make it more powerful.

Olivier B. (original author or PatternSub) mentioned that one of the problems was the annoyance
of working through DimShuffle

Olivier B. also suggests writing scalar-related patterns in terms of scalars, and then inferring Tensor-related patterns.
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Random Numbers, Random Variables and Compiling Graphical Models


Objective

It might be nice to use Theano as a language and compiler for questions about
graphical models.

In this way, we could express something like Logistic Regression like this:

from theano import random_variable as RV

X, Y, s_idx = RV.empirical(my_dataset)

# model parameters
v = shared(numpy.zeros(()))
b = shared(numpy.zeros(()))

Y_hat = RV.multinomial(n=1, p=softmax(dot(X,v)+b))

cost = sum(-log(Y_hat.density(Y)))

train_fn = function([s_idx], cost, updates=[[v,b], grad(cost, [v,b]]))





RandomVariable(Variable)

    def sample(self, n):
        """[Symbolically] draw a sample of size n"""

    def density(self, pt, givens=None):
        """Conditional Density/Probability of P(self=pt)

        Implicitly conditioned on knowing the values of all variables
        on which this one depends.  Optionally override ancestor variables
        using givens.
        """

    def mode(self):
        """Return expression of the most likely value of this distribution"""





We would really like to integrate out certain variables sometimes...

An RBM could be expressed like this:

w = shared(initial_weights)
v = shared(initial_visible_biases)
u = shared(initial_hidden_biases)
visible = RV.binomial(n=1, p=None) # p filled in by EnergyModel
hidden =  RV.binomial(n=1, p=None) # p filled in by EnergyModel

energy = dot(visible,v) + dot(hidden, u) + dot(dot(visible, w), hidden)

RBM = EnergyModel(energy, variables={'visible':visible, 'hidden':hidden], params=[w,v,u])

RBM.energy(v,h) # an expression for the energy at point (v,h)

RBM.visible.energy(h) # an expression for the free energy
RBM.hidden.energy(h) # an expression for the free energy
v_given_h = RBM.visible.conditional(h) # a random variable





Rather than program all the training algorithms into an RBM module,
the idea would be to express the relationship between RBM variables so that we
could automatically recognize how to do Gibbs sampling, gradient descent on Free
Energy, etc.
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Proposal for gradient wrt complex variables

This is a proposal to handle gradients of a scalar, real variable
(usually, a cost) with respect to tensor variables, of complex (and
real) type, in an optimization perspective.

Derivative of complex variables is usually studied only for so-called
analytical complex functions, which have a particular structure in
their partial derivatives. However, we do not want to limit ourselves
to analytical functions, and we make other assumptions (that the final
cost is real-valued, for instance), so we will adopt a different
convention for gradients than what is usually used in the literature.


Gradient (re-)definition

We are interested in the case where we have a final real-valued
cost, [image: C], and a graph of mathematical expressions, including
real-valued and complex-valued variables (scalars, vectors, matrices,
higher-order tensors), and we want to compute the gradient of [image: C],
wrt some variables in that graph, using gradient back-propagation.
In the case where some variables are complex, the usual chain rule
cannot be applied, except in some cases.

For each real-valued variable [image: r] (not necessarily scalar,
it could be a matrix, for instance), in particular [image: \Re v] and [image: \Im v], partial derivatives can be defined:
[image: \frac{\partial C}{\partial r}] has the same number of dimensions
and shape as [image: r]. We will limit that notation to real-valued
variables only, this way, the partial derivative itself will be
real-valued too. We will not use that notation for the complex
derivative of analytical complex functions.

For any real-valued intermediate variable [image: t], the usual chain
rule applies:


[image: \frac{\partial C}{\partial r} = \frac{\partial C}{\partial t} \frac{\partial t}{\partial r}]


If [image: z] is a complex variable, with [image: \Re z = x] and
[image: \Im z = y], we can consider [image: x] and [image: y] as free
variables, and then:


[image: \frac{\partial C}{\partial r} = \frac{\partial C}{\partial x} \frac{\partial x}{\partial r} + \frac{\partial C}{\partial y} \frac{\partial y}{\partial r}]


If we want to use an algorithm similar to gradient backpropagation,
we can see that, here, we need to have both [image: \frac{\partial C}{\partial \Re t}] and [image: \frac{\partial C}{\partial \Im t}], in order
to compute [image: \frac{\partial C}{\partial r}].

For each variable [image: v] in the expression graph, let us denote
[image: \nabla_C(v)] the gradient of [image: C] with respect to
[image: v]. It is a tensor with the same dimensions as [image: v], and can
be complex-valued. We define:


[image: \nabla_C(v) = \frac{\partial C}{\partial \Re v} + i \frac{\partial C}{\partial \Im v}]


This is the tensor that we are going to back-propagate through the
computation graph.




Generalized chain rule

Using the definition above, if we have two complex variables [image: z = x + iy] and [image: t = r + is] (with [image: x, y, r, s] all real-valued):


[image: \nabla_C(z) &= \frac{\partial C}{\partial \Re z} + i \frac{\partial C}{\partial \Im z} \\             &= \frac{\partial C}{\partial x} + i \frac{\partial C}{\partial y}  \nabla_C(t) &= \frac{\partial C}{\partial \Re t} + i \frac{\partial C}{\partial \Im t} \\             &= \frac{\partial C}{\partial r} + i \frac{\partial C}{\partial s} \\             &=   \left(\frac{\partial C}{\partial x} \frac{\partial x}{\partial r} +                          \frac{\partial C}{\partial y} \frac{\partial y}{\partial r}\right) +                i \left(\frac{\partial C}{\partial x} \frac{\partial x}{\partial s} +                          \frac{\partial C}{\partial y} \frac{\partial y}{\partial s}\right) \\             &= \frac{\partial C}{\partial x} \left(\frac{\partial x}{\partial r} + i \frac{\partial x}{\partial s}\right) +                \frac{\partial C}{\partial y} \left(\frac{\partial y}{\partial r} + i \frac{\partial y}{\partial s}\right) \\             &= \Re \left(\nabla_C(z)\right) \left(\frac{\partial x}{\partial r} + i \frac{\partial x}{\partial s}\right) +                \Im \left(\nabla_C(z)\right) \left(\frac{\partial y}{\partial r} + i \frac{\partial y}{\partial s}\right)]


This formula can be used whether or not [image: C] is an analytical
function of [image: z] or [image: t], and whether or not [image: z] is an
analytical function of [image: t].




Special cases


Real-valued input variable

If variable [image: x] is defined as real-valued, it can sometimes
be useful to have the value of [image: \nabla_C(z)] instead of only
[image: \frac{\partial C}{\partial x}], because the imaginary part
contains information on how the cost would change if [image: y] was not
constrained to be 0.




Real-valued intermediate variable

When [image: x] is an intermediate variable, however, the gradient of
[image: C] wrt [image: t] must not be backpropagated through [image: y].
Therefore, we have:


[image: \nabla_C(t) &= \frac{\partial C}{\partial r} + i \frac{\partial C}{\partial s} \\             &=   \frac{\partial C}{\partial x} \frac{\partial x}{\partial r} +                i \frac{\partial C}{\partial x} \frac{\partial x}{\partial s} \\             &= \Re \left(\nabla_C(z)\right) \left(\frac{\partial x}{\partial r} + i \frac{\partial x}{\partial s}\right)]


The imaginary part of [image: \nabla_C(z)] is ignored, because
[image: \Im z] is constrained to be 0.




Analytic functions

If [image: z] is the output of an analytic function of [image: t], some
simplifications are possible. Analytic functions include, for instance,
polynomial functions, the exponential function. Most complex functions,
however, are not: absolute value, real part, imaginary part, complex
conjugate, etc.

Analytic (or holomorphic) functions satisfy the Cauchy-Riemann equations:


[image: \frac{\partial \Re z}{\partial \Re t} = \frac{\partial \Im z}{\partial \Im t} \text{ and } \frac{\partial \Re z}{\partial \Im t} = - \frac{\partial \Im z}{\partial \Re t}]


Or, in our case:


[image: \frac{\partial x}{\partial r} = \frac{\partial y}{\partial t} \text{ and } \frac{\partial x}{\partial s} = - \frac{\partial y}{\partial r}]


This leads to:


[image: \nabla_C(t) &= \Re \left(\nabla_C(z)\right) \left(\frac{\partial x}{\partial r} + i \frac{\partial x}{\partial s}\right) +                \Im \left(\nabla_C(z)\right) \left(\frac{\partial y}{\partial r} + i \frac{\partial y}{\partial s}\right) \\             &= \Re \left(\nabla_C(z)\right) \left(\frac{\partial x}{\partial r} + i \frac{\partial x}{\partial s}\right) +                \Im \left(\nabla_C(z)\right) \left(- \frac{\partial x}{\partial s} + i \frac{\partial x}{\partial r}\right) \\             &= \Re \left(\nabla_C(z)\right) \left(\frac{\partial x}{\partial r} + i \frac{\partial x}{\partial s}\right) +                i \Im \left(\nabla_C(z)\right) \left(\frac{\partial x}{\partial r} + i \frac{\partial x}{\partial s}\right) \\ \nabla_C(t) &= \nabla_C(z) \left(\frac{\partial x}{\partial r} + i \frac{\partial x}{\partial s}\right)             = - i \nabla_C(z) \left(\frac{\partial y}{\partial r} + i \frac{\partial y}{\partial s}\right)]







Finite differences

In order to verify that the mathematical formula for a gradient, or its
implementation, is correct, we usually use a finite-differenciation
approach.  If [image: C] is our real scalar cost, and [image: x] a
real-valued scalar variable, then:


[image: \frac{\partial C}{\partial x} \approx \frac{C(x + \varepsilon) - C(x)}{\varepsilon}]


where [image: \varepsilon] is also a real scalar, of small magnitude
(typically [image: 10^{-6}] to [image: 10^{-4}]). If [image: x] is a
tensor, then this approximation has to be made for each element
[image: x_i] independently (a different [image: \varepsilon_i] could be used
each time, but usually they are all equal to [image: \varepsilon]).

For a complex scalar variable [image: z = x + iy]:


[image: \nabla_C(z) &= \frac{\partial C}{\partial x} + i \frac{\partial C}{\partial y}\\ \nabla_C(z) &\approx \frac{C(z + \delta) - C(z)}{\delta} + i \frac{C(z + i \varepsilon) - C(z)}{\varepsilon}]


Both partial derivative have to be estimated independently, using
generally [image: \delta = \varepsilon].







          

      

      

    


    
         Copyright 2008--2015, LISA lab.
      Last updated on Mar 27, 2015.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Theano 0.7 documentation 
 
      

    


    
      
          
            
  
Acknowledgements


	The developers of NumPy [http://numpy.scipy.org/]. Theano is based on its ndarray object and uses much of its implementation.



	The developers of SciPy [http://scipy.org/]. Our sparse matrix support uses their sparse matrix objects. We also reuse other parts.



	All Theano authors in the commit log.



	All Theano users that have given us feedback.



	The GPU implementation of tensordot is based on code from Tijmen
Tieleman’s gnumpy [http://www.cs.toronto.edu/~tijmen/gnumpy.html]



	The original version of the function cpuCount() in the file
theano/misc/cpucount.py come from the project pyprocessing [http://pyprocessing.berlios.de/]. It is available under the same license
as Theano.



	Our random number generator implementation on CPU and GPU uses the MRG31k3p algorithm that is described in:



	L’Ecuyer and R. Touzin, Fast Combined Multiple Recursive Generators with Multipliers of the form a = +/- 2^d +/- 2^e [http://www.informs-sim.org/wsc00papers/090.PDF], Proceedings of the 2000 Winter Simulation Conference, Dec. 2000, 683–689.






We were authorized by Pierre L’Ecuyer to copy/modify his Java implementation in the SSJ [http://www.iro.umontreal.ca/~simardr/ssj/] software and to relicense it under BSD 3-Clauses in Theano.









          

      

      

    


    
         Copyright 2008--2015, LISA lab.
      Last updated on Mar 27, 2015.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          previous |

        	Theano 0.7 documentation 
 
      

    


    
      
          
            
  
LICENSE

Copyright (c) 2008–2015, Theano Development Team
All rights reserved.

Contains code from NumPy, Copyright (c) 2005-2011, NumPy Developers.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:



	Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

	Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

	Neither the name of Theano nor the names of its contributors may be
used to endorse or promote products derived from this software without
specific prior written permission.






THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ‘’AS IS’’ AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
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  	(Op method)
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  	(Op method)
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  	(Op method)
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  	canonicalize() (built-in function)
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  	(in module theano.tensor)
  


      


      
  	cast_policy (in module config)
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  	check_preallocated_output_ndim (config.config.DebugMode attribute)
  


      
  	chi2sf() (in module theano.tensor)
  


      
  	Cholesky (class in theano.tensor.slinalg)
  


      
  	CholeskyGrad (class in theano.tensor.slinalg)
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  	(class in theano.gof.type)
  


      


      
  	clip() (in module theano.tensor)
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  	clone() (in module theano)
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  	compiledir_format (in module config)
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  	conv (module), [1]
  


      
  	conv2d() (in module theano.tensor.nnet.conv)
  


      	
        
  	(in module theano.tensor.signal.conv)
  


      


      
  	conv2d_fft() (in module theano.sandbox.cuda.fftconv)
  


      
  	conv3D() (in module theano.tensor.nnet.Conv3D)
  


      
  	conv3d() (in module theano.tensor.nnet.conv3d2d)
  


      
  	conv3d_fft() (in module theano.sandbox.cuda.fftconv)
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  	csm_indptr() (in module theano.sparse.basic)
  


      
  	csm_properties (in module theano.sparse.basic)
  


      
  	csm_shape() (in module theano.sparse.basic)
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  	cumprod() (in module theano.tensor.extra_ops)
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  	CURAND_Base (class in theano.sandbox.cuda.rng_curand)
  


      
  	CURAND_Normal (class in theano.sandbox.cuda.rng_curand)
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  	(in module config)
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  	debugprint() (in module theano.printing)
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  	diag() (in module theano.tensor.nlinalg)
  


      
  	diagonal() (theano.tensor._tensor_py_operators method)
  


      
  	diff() (in module theano.tensor.extra_ops)
  


  

  	
      
  	difference() (in module theano.gof.utils)
  


      
  	dimshuffle() (theano.tensor._tensor_py_operators method)
  


      
  	disconnected_grad() (in module theano.gradient)
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  	DisconnectedType (class in theano.gradient)
  


      
  	dnn_conv() (in module theano.sandbox.cuda.dnn)
  


      
  	dnn_pool() (in module theano.sandbox.cuda.dnn)
  


      
  	do_constant_folding() (built-in function)
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  	dot() (in module theano)
  


      	
        
  	(in module theano.sparse.basic)
  


        
  	(in module theano.tensor)
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  	DotModulo (class in theano.sandbox.rng_mrg)
  


      
  	DoubleOp (class in theano.misc.doubleop)
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  	dtype (theano.tensor._tensor_py_operators attribute)
  


      	
        
  	(theano.tensor.TensorType attribute)
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  	Eigh (class in theano.tensor.nlinalg)
  


      
  	EighGrad (class in theano.tensor.nlinalg)
  


      
  	Eigvalsh (class in theano.tensor.slinalg)
  


      
  	EigvalshGrad (class in theano.tensor.slinalg)
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  	THEANO_FLAGS, [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13]
  


      


      
  	eq() (in module theano.sparse.basic)
  


      	
        
  	(in module theano.tensor)
  


      


      
  	erf() (in module theano.tensor)
  


      
  	erfinv() (in module theano.tensor)
  


      
  	eval() (theano.gof.type.PureType.Variable method)
  


  

  	
      
  	evaluate() (theano.sparse.sandbox.sp.ConvolutionIndices static method)
  


      
  	exception_verbosity (in module config)
  


      
  	exclude (Query attribute)
  


      
  	excluding() (mode.Mode method)
  


      
  	exp() (in module theano.tensor)
  


      
  	Expm (class in theano.tensor.slinalg)
  


      
  	ExpmGrad (class in theano.tensor.slinalg)
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  	extend (in module theano.typed_list.basic)
  


      
  	ExtractDiag (class in theano.tensor.nlinalg)
  


      
  	eye() (in module theano.tensor)
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  	FAST_COMPILE (in module mode)
  


      
  	FAST_RUN (in module mode)
  


      
  	fastmath (config.config.nvcc attribute)
  


      
  	fft() (in module conv)
  


      	
        
  	(in module downsample)
  


      


      
  	fgraph (module), [1]
  


      
  	fill cut
  


      
  	fill() (in module theano.tensor)
  


      
  	fill_diagonal() (in module theano.tensor.extra_ops)
  


      
  	fill_diagonal_offset() (in module theano.tensor.extra_ops)
  


      
  	filter() (PureType method)
  


      	
        
  	(theano.gof.type.PureType method)
  


      


      
  	filter_inplace() (PureType method)
  


      
  	filter_variable() (theano.gof.type.PureType method)
  


      
  	flatten() (in module theano.gof.utils)
  


      	
        
  	(in module theano.tensor)
  


        
  	(theano.tensor._tensor_py_operators method)
  


      


  

  	
      
  	floatX (in module config)
  


      
  	floor() (in module theano.tensor)
  


      
  	flops() (built-in function)
  


      	
        
  	(theano.sandbox.cuda.blas.BaseGpuCorr3dMM method)
  


        
  	(theano.sandbox.cuda.blas.BaseGpuCorrMM method)
  


        
  	(theano.sandbox.cuda.blas.GpuConv method)
  


      


      
  	foldl() (in module theano)
  


      
  	foldr() (in module theano)
  


      
  	force_device (in module config)
  


      
  	format_as() (in module theano.gradient)
  


      
  	FromFunctionOp (class in theano.compile.ops)
  


      
  	function (module)
  


      
  	function() (in module function)
  


      	
        
  	(in module theano)
  


      


      
  	function_dump() (in module theano)
  


      	
        
  	(in module theano.compile.function)
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  	gamma() (in module theano.tensor)
  


      
  	gammaln() (in module theano.tensor)
  


      
  	ge() (in module theano.sparse.basic)
  


      	
        
  	(in module theano.tensor)
  


      


      
  	gemm
  


      
  	gen() (shared_randomstreams.RandomStreams method)
  


      
  	Generic (class in theano.gof.type)
  


      
  	get_context() (Op method)
  


      
  	get_helper_c_code_args() (theano.sandbox.cuda.basic_ops.GpuIncSubtensor method)
  


      
  	get_item_2d (in module theano.sparse.basic)
  


      
  	get_item_2lists (in module theano.sparse.basic)
  


      
  	get_item_list (in module theano.sparse.basic)
  


      
  	get_item_scalar (in module theano.sparse.basic)
  


      
  	get_out_shape() (theano.sandbox.cuda.dnn.GpuDnnConv static method)
  


      
  	get_scalar_constant_value() (theano.tensor._tensor_py_operators method)
  


      
  	get_shape_info() (PureType method)
  


      
  	get_size() (PureType method)
  


      
  	get_substream_rstates() (theano.sandbox.rng_mrg.MRG_RandomStreams method)
  


      
  	get_value() (theano.sandbox.cuda.var.CudaNdarraySharedVariable method)
  


      
  	getitem (in module theano.typed_list.basic)
  


      
  	give_variables_names() (in module theano.gof.utils)
  


      
  	gof (module)
  


      
  	GPU transfer
  


      
  	GpuAdvancedIncSubtensor1 (class in theano.sandbox.cuda.basic_ops)
  


      
  	GpuAdvancedIncSubtensor1_dev20 (class in theano.sandbox.cuda.basic_ops)
  


      
  	GpuAdvancedSubtensor1 (class in theano.sandbox.cuda.basic_ops)
  


      
  	GpuAlloc (class in theano.sandbox.cuda.basic_ops)
  


      
  	GpuCAReduce (class in theano.sandbox.cuda.basic_ops)
  


      
  	GpuContiguous (class in theano.sandbox.cuda.basic_ops)
  


      
  	GpuConv (class in theano.sandbox.cuda.blas)
  


      
  	GpuCorr3dMM (class in theano.sandbox.cuda.blas)
  


      
  	GpuCorr3dMM_gradInputs (class in theano.sandbox.cuda.blas)
  


      
  	GpuCorr3dMM_gradWeights (class in theano.sandbox.cuda.blas)
  


      
  	GpuCorrMM (class in theano.sandbox.cuda.blas)
  


      
  	GpuCorrMM_gradInputs (class in theano.sandbox.cuda.blas)
  


      
  	GpuCorrMM_gradWeights (class in theano.sandbox.cuda.blas)
  


      
  	GpuCrossentropySoftmax1HotWithBiasDx (class in theano.sandbox.cuda.nnet)
  


      
  	GpuCrossentropySoftmaxArgmax1HotWithBias (class in theano.sandbox.cuda.nnet)
  


      
  	GpuDimShuffle (class in theano.sandbox.cuda.basic_ops)
  


  

  	
      
  	GpuDnnConv (class in theano.sandbox.cuda.dnn)
  


      
  	GpuDnnConvDesc (class in theano.sandbox.cuda.dnn)
  


      
  	GpuDnnConvGradI (class in theano.sandbox.cuda.dnn)
  


      
  	GpuDnnConvGradW (class in theano.sandbox.cuda.dnn)
  


      
  	GpuDnnPool (class in theano.sandbox.cuda.dnn)
  


      
  	GpuDnnPoolDesc (class in theano.sandbox.cuda.dnn)
  


      
  	GpuDnnPoolGrad (class in theano.sandbox.cuda.dnn)
  


      
  	GpuDnnSoftmax (class in theano.sandbox.cuda.dnn)
  


      
  	GpuDnnSoftmaxGrad (class in theano.sandbox.cuda.dnn)
  


      
  	GpuDot22 (class in theano.sandbox.cuda.blas)
  


      
  	GpuDot22Scalar (class in theano.sandbox.cuda.blas)
  


      
  	GpuDownsampleFactorMax (class in theano.sandbox.cuda.blas)
  


      
  	GpuDownsampleFactorMaxGrad (class in theano.sandbox.cuda.blas)
  


      
  	GpuDownsampleFactorMaxGradGrad (class in theano.sandbox.cuda.blas)
  


      
  	GpuElemwise (class in theano.sandbox.cuda.basic_ops)
  


      
  	GpuFlatten (class in theano.sandbox.cuda.basic_ops)
  


      
  	GpuFromHost (class in theano.sandbox.cuda.basic_ops)
  


      
  	GpuGemm (class in theano.sandbox.cuda.blas)
  


      
  	GpuGemv (class in theano.sandbox.cuda.blas)
  


      
  	GpuGer (class in theano.sandbox.cuda.blas)
  


      
  	GpuIncSubtensor (class in theano.sandbox.cuda.basic_ops)
  


      
  	GpuJoin (class in theano.sandbox.cuda.basic_ops)
  


      
  	GpuReshape (class in theano.sandbox.cuda.basic_ops)
  


      
  	GpuShape (class in theano.sandbox.cuda.basic_ops)
  


      
  	GpuSoftmax (class in theano.sandbox.cuda.nnet)
  


      
  	GpuSoftmaxWithBias (class in theano.sandbox.cuda.nnet)
  


      
  	GpuSubtensor (class in theano.sandbox.cuda.basic_ops)
  


      
  	grad() (built-in function)
  


      	
        
  	(in module theano.gradient), [1]
  


        
  	(theano.tensor.nlinalg.Eigh method)
  


        
  	(theano.tensor.nlinalg.MatrixInverse method)
  


      


      
  	grad_clip() (in module theano.gradient)
  


      
  	grad_not_implemented() (in module theano.gradient)
  


      
  	grad_undefined() (in module theano.gradient)
  


      
  	gradient (module)
  


      
  	GradientError
  


      
  	Graph
  


      
  	
    graph construct
  


      	
        
  	Apply
  


        
  	Constant
  


        
  	Op
  


        
  	Type
  


        
  	Variable
  


      


      
  	gt() (in module theano.sparse.basic)
  


      	
        
  	(in module theano.tensor)
  


      


      
  	guess_n_streams() (in module theano.sandbox.rng_mrg)
  


  





H


  	
      
  	hard_sigmoid() (in module tensor.nnet)
  


      
  	hash_from_dict() (in module theano.tensor.utils)
  


      
  	hash_from_ndarray() (in module theano.tensor.utils)
  


      
  	hessian() (in module theano.gradient)
  


      
  	Hint (class in theano.sandbox.linalg.ops)
  


  

  	
      
  	HintsFeature (class in theano.sandbox.linalg.ops)
  


      
  	HintsOptimizer (class in theano.sandbox.linalg.ops)
  


      
  	History (class in toolbox)
  


      
  	HostFromGpu (class in theano.sandbox.cuda.basic_ops)
  


      
  	hstack() (in module theano.sparse.basic)
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  	identity_like() (in module theano.tensor)
  


      
  	ignore_bug_before (config.config.warn attribute)
  


      
  	imag() (in module theano.tensor)
  


      
  	images2neibs() (in module theano.tensor.nnet.neighbours)
  


      
  	In (class in io)
  


      
  	inc_rstate() (theano.sandbox.rng_mrg.MRG_RandomStreams method)
  


      
  	inc_subtensor serialization
  


      
  	inc_subtensor() (in module theano.tensor)
  


      
  	include (Query attribute)
  


      
  	including() (mode.Mode method)
  


      
  	infer_shape() (built-in function)
  


      	
        
  	(Op method)
  


      


      
  	init (config.config.pycuda attribute)
  


      
  	init_gpu_device (in module config)
  


      
  	Inplace
  


      
  	inplace_elemwise
  


  

  	
      
  	inplace_random
  


      
  	inplace_setsubtensor
  


      
  	insert (in module theano.typed_list.basic)
  


      
  	int_division (in module config)
  


      
  	inv() (in module theano.tensor)
  


      
  	InvalidValueError (class in debugmode)
  


      
  	invert() (in module theano.tensor)
  


      
  	io (module)
  


      
  	irecv() (in module theano.tensor.io)
  


      
  	iround() (in module theano.tensor)
  


      
  	is_valid_value() (PureType method)
  


      	
        
  	(theano.gof.type.PureType method)
  


      


      
  	isend() (in module theano.tensor.io)
  


      
  	isinf() (in module theano.tensor)
  


      
  	isnan() (in module theano.tensor)
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  	jacobian() (in module theano.gradient)
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  	kron() (in module theano.tensor.slinalg)
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  	ldflags (config.config.blas attribute)
  


      
  	le() (in module theano.sparse.basic)
  


      	
        
  	(in module theano.tensor)
  


      


      
  	length (in module theano.typed_list.basic)
  


      
  	Linker, [1]
  


      
  	linker (in module config)
  


      	
        
  	(mode.Mode attribute)
  


      


      
  	load() (in module theano.tensor.io)
  


      
  	LoadFromDisk (class in theano.tensor.io)
  


  

  	
      
  	local_alloc_elemwise_assert (config.config.experimental attribute)
  


      
  	local_log_softmax
  


      
  	LocalOptimizer (built-in class)
  


      
  	log() (in module theano.tensor)
  


      
  	Lop() (in module theano.gradient)
  


      
  	lt() (in module theano.sparse.basic)
  


      	
        
  	(in module theano.tensor)
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  	mac_framework_link (config.config.cmodule attribute)
  


      
  	make_list (in module theano.typed_list.basic)
  


      
  	make_node() (built-in function)
  


      	
        
  	(theano.sandbox.cuda.basic_ops.GpuAdvancedIncSubtensor1_dev20 method)
  


      


      
  	make_thunk() (built-in function)
  


      
  	make_variable() (PureType method)
  


      	
        
  	(theano.gof.type.PureType method)
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OpFromGraph


This page describes theano.OpFromGraph, an Op that allows to
encapsulate a Theano graph in an op.


This can be used to encapsulate some functionality in one block. It is
useful to scale Theano compilation for regular bigger graphs when we
reuse that encapsulated fonctionality with different inputs many
times. Due to this encapsulation, it can make Theano compilation phase
faster for graphs with many nodes.


Using this for small graphs is not recommended as it disables
optimizations between what is inside the encapsulation and outside of it.



		
class theano.compile.builders.OpFromGraph(inputs, outputs, **kwargs)


		This creates an Op from inputs and outputs lists of variables.


The signature is similar to theano.function() and the resulting
Op‘s perform will do the same operation as:


orig_function(inputs, outputs, **kwargs)







		TODO:


		
		examples for a multi-layer mlp. where?


		__hash__, __eq__ otherwise won’t merge, try gof.opt.is_same_graph_with_merge(op1.new_outputs, op2, new_outputs)


		c_code() to remove the double overhead?


		opt to unfold it, work inplace on inputs


		grad() make it support DisconnectedType and the new interface


		check how it works with updates.


		add test with constant as input or inside the inner graph.


		Add support for the GPU? Probably just need an opt to remove transfer


		Add support to pickle this Op.


		Add support/test with random generator















		Note:		
		We support shared variables in the inner graph. This is automatic and
invisible to the user. They can be as input to the node or in the
inner graph.


		We support unused inputs. This is needed for the grad.













Example 1:


from theano import function, OpFromGraph, tensor
x, y, z = tensor.scalars('xyz')
e = x + y * z
op = OpFromGraph([x, y, z], [e])
# op behaves like a normal theano op
e2 = op(x, y, z) + op(z, y, x)
fn = function([x, y, z], [e2])






Example 2 with shared variable:


import numpy
import theano
from theano import config, function, OpFromGraph, tensor
x, y, z = tensor.scalars('xyz')
s = theano.shared(numpy.random.rand(2, 2).astype(config.floatX))
e = x + y * z + s
op = OpFromGraph([x, y, z], [e])
# op behaves like a normal theano op
e2 = op(x, y, z) + op(z, y, x)
fn = function([x, y, z], [e2])
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Compatibility with Python versions.


Theano is compatible with Python versions >= 2.6 including 3.x series.
This guide provides coding guidelines on how to maintain
comnpatibility.



Installation (2to3 and setup.py)





Python code compatibility



Compatibility package (theano.compat)


Compatibility between 2.x and 3.x is implemented using six [http://pythonhosted.org/six], a Python
2 and 3 compatibility library by Benjamin Peterson.  A copy of six [http://pythonhosted.org/six]
library is included in theano.compat package, but it should not be
called directly.  Instead, use symbols exposed at the package level.


Correct:


from theano.compat import b






Incorrect:


from theano.compat.six import b






from six import b









Strings, bytes and unicode







C code compatibility



Module initialization





PyCapsule and PyCObject







References
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Tensor


This file describes the design of theano.tensor.



Elemwise grad and R_op


Here’s another straightforward example, though a bit more elaborate
than adding two numbers together. Let’s say that you want to compute
the logistic curve, which is given by:



[image: s(x) = \frac{1}{1 + e^{-x}}]
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Internal documentation of the scan op



Top-level description of scan


The scan operation is meant to be able to describe symbolically loops,
recurrent relations or dynamical systems. In general, we will say that the
scan op implements system of equations of the following form:



[image: \mathbf{x}_1(t) = f_{\mathbf{x}_1}
    (\mathbf{u}_1(t), \mathbf{u}_1(t-1), \ldots, \mathbf{u}_1(t-l_1),
     \mathbf{u}_2(t), \ldots, \mathbf{u}_2(t-l_2),
     \ldots,
     \mathbf{u}_M(t), \ldots, \mathbf{u}_M(t - l_M),
     \mathbf{x}_1(t-1), \ldots, \mathbf{x}_1(t-k_1),
     \ldots,
     \mathbf{x}_N(t-1), \ldots, \mathbf{x}_N(t-k_N),
     \mathbf{w}_1, \ldots, \mathbf{w}_Q)

\vdots

\mathbf{x}_N(t) = f_{\mathbf{x}_N}
    (\mathbf{u}_1(t), \mathbf{u}_1(t-1), \ldots, \mathbf{u}_1(t-l_1),
     \mathbf{u}_2(t), \ldots, \mathbf{u}_2(t-l_2),
     \ldots,
     \mathbf{u}_M(t), \ldots, \mathbf{u}_M(t - l_M),
     \mathbf{x}_1(t-1), \ldots, \mathbf{x}_1(t-k_1),
     \ldots,
     \mathbf{x}_N(t-1), \ldots, \mathbf{x}_N(t-k_N),
     \mathbf{w}_1, \ldots, \mathbf{w}_Q)

\mathbf{y}_1(t) = f_{\mathbf{y}_1}
    (\mathbf{u}_1(t), \mathbf{u}_1(t-1), \ldots, \mathbf{u}_1(t-l_1),
     \mathbf{u}_2(t), \ldots, \mathbf{u}_2(t-l_2),
     \ldots,
     \mathbf{u}_M(t), \ldots, \mathbf{u}_M(t - l_M),
     \mathbf{x}_1(t-1), \ldots, \mathbf{x}_1(t-k_1),
     \ldots,
     \mathbf{x}_N(t-1), \ldots, \mathbf{x}_N(t-k_N),
     \mathbf{w}_1, \ldots, \mathbf{w}_Q)

  \vdots

\mathbf{y}_M(t) = f_{\mathbf{y}_M}
    (\mathbf{u}_1(t), \mathbf{u}_1(t-1), \ldots, \mathbf{u}_1(t-l_1),
     \mathbf{u}_2(t), \ldots, \mathbf{u}_2(t-l_2),
     \ldots,
     \mathbf{u}_M(t), \ldots, \mathbf{u}_M(t - l_M),
     \mathbf{x}_1(t-1), \ldots, \mathbf{x}_1(t-k_1),
     \ldots,
     \mathbf{x}_N(t-1), \ldots, \mathbf{x}_N(t-k_N),
     \mathbf{w}_1, \ldots, \mathbf{w}_Q)]



The equations describe a system evolving in time, where [image: t] represents the
current step. The system is described by inputs, states, outputs and
parameteres.


The inputs, denoted by [image: \mathbf{u}] are time-varying quantities,
hence indexed by [image: t]. They however only influence the system, but are
not influenced by the system.


The states [image: \mathbf{x}] are time-varying quantities, whose value at
time [image: t] depends on its (or other state) previous values as well as
the inputs and parameters. Note that the first few values of the states are
always provided, otherwise we could not imploy the recurrent equation to
generate these sequence of values without a starting point.


The outputs, [image: \mathbf{y}] are outputs of the system, i.e. values that
depend on the previous values of the states and inputs. The difference
between outputs and states is that outputs do not feed back into the system.


The parameters [image: \mathbf{w}] are fixed quantities that are re-used at
every time step of the evolution of the system.


Each of the equations above are implemented by the inner function of scan. You
can think of the inner function as a theano function that gets executed
at each step to get the new values. This inner function should not be
confused with the constructive function, which is what the user gives to
the scan function. The constructive function is used to construct the
computational graph that is afterwards compiled into the inner function.





Naming conventions



		input_state will stand for a state [image: \mathbf{x}], when it is
provided as an input to the recurrent formula (the inner function) that
will generate the new value of the state


		output_state will stand for a state [image: \mathbf{x}] when it refers
to the result of the recurrent formula (the output of the inner function)


		output will stand for an output [image: \mathbf{y}]


		input will be an input [image: \mathbf{u}]


		parameter will stand for a parameter tensor [image: \mathbf{w}] that stays
constant at each step of the inner function


		non_numeric_input_state will stand for states that are not numeric in nature,
more specifically random states, when they are provided as an input. The
same holds for non_numeric_output_state.


		t is the time index (the current step in the evolution of the system).


		T is the total number of steps in the evolution of the system.


		the suffix _slices added to either x or u will mean the list of
variables representing slices of states or inputs. These are the arguments
given to the constructive function of scan (see above).


		the suffix _inner added to x, y, xy, u, w or z
will mean the variables representing the state/output/input/weights in the
inner function


		the suffix _outer added to x, y, xy, u, w or z
will mean the variables representing the state/output/input/weights in the
main computational graph (the one containing the scan op).








Files


The implementation of scan is spread over several files. The different
files, and section of the code they deal with, are :



		scan.py implements the scan function. The scan function
arranges the arguments of scan correctly, constructs the scan op and
afterwards calls the constructed scan op on the arguments. This function
takes care of figuring out missing inputs and shared variables.


		scan_op.py implements the scanOp class. The scanOp respects
the Op interface, and contains most of the logic of the scan operator.


		scan_utils.py contains several helpful functions used through out the
other files that are specific of the scan operator.


		scan_views.py contains different views of the scan op that have
simpler and easier signatures to be used in specific cases.


		scan_opt.py contains the list of all optimizations for the scan
operator.








The logical flow


First the scan arguments are parsed by the function canonical_arguments,
that wraps them into lists and adds default values for the arguments. One
important step that happens in this function is that the inputs arguments
are converted such that they all have a single tap, namely 0. For example
if you have [{'input':u, 'taps':[0, 4]}] as the list of inputs arguments
to scan, it gets converted into [{'input':u, 'taps':[0]}, {'input':u[4:],
'taps':[0]}].


The second step is to check if n_steps is a constant and has the value 1
or -1. If that is true then the function one_step_scan is called which
unwraps the computation of the inner function into the outer graph without
adding any scan op in the graph.
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  “Thank YOU for correcting it so quickly. I wish all packages I worked
with would have such an active maintenance - this is as good as it
gets :-)”
– Jan Antolik, [theano-users] strange behaviour, Mon, Aug 2, 2010 at 1:36 PM




“Theano rocks incredibly. It’s like the holy grail of linear algebra
computations.”


– visionlessvisionary on reddit


http://www.reddit.com/r/MachineLearning/comments/banhb/deep_learning_tutorial_learn_to_build_complex/c0lsvik




I am completely new to theano and after running the deep-learning
tutorial and see the examples actually work on my GTX 275 I must say I
am 100% sold on the theano approach; this is an amazing project that
deserves broad recognition among the scientific python community.


– Olivier Grisel
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TheanoLab @ NCAP CIFAR Summer School 2011


Aug 2-6, 2011, Toronto, Canada.


Theano is python software for evaluating complicated array expressions.


What does it do?




		aggressive expression optimizations,


		automatic GPU use, and


		symbolic differentiation.









It complements the Python numeric/scientific software stack (e.g. NumPy, SciPy,
scikits, matplotlib, PIL.)


Design and feature set has been driven by machine learning research
at the University of
Montreal (groups of Yoshua Bengio, Pascal Vincent, Douglas Eck).
The result is a very good library for doing research in deep
learning and neural network training, and a flexible framework for
many other models and algorithms in machine learning more generally.


It has proven to be useful for implementing:




		linear and nonlinear neural network classifiers


		convolutional models


		Energy models: RBM, DBN, GRBM, ssRBM, AIS


		Auto-encoders: DAE, CAE


		GP regression


		sparse coding


		recurrent neural networks, echo state, (HMM?)


		online and batch learning and optimization









As people’s needs change this list will grow, but Theano is built around vector,
matrix, and tensor expressions; there is little reason to use it for
calculations on other data structures.



Contents


The structured part of these lab sessions will be a walk-through of the following
material. Interleaved with this structured part will be blocks of time for
individual or group work.  The idea is that you can try out Theano and get help
from gurus on hand if you get stuck.




		Schedule
		Day 1


		Day 2


		Day 3


		Day 4








		Introduction
		Background Questionaire


		Python in one slide


		NumPy in one slide


		What’s missing?


		Theano in one slide


		Project status


		Why scripting for GPUs?


		How Fast are GPUs?


		Software for Directly Programming a GPU








		Theano
		Pointers


		Description


		Simple example


		Exercise 1


		Real example


		Theano flags


		Exercise 2


		GPU


		Exercise 3


		Symbolic variables


		Differentiation details


		Benchmarks








		Advanced Theano
		Conditions


		Loops


		Exercise 4


		Compilation pipeline


		Inplace optimization


		Profiling


		Exercise 5


		Printing/Drawing Theano graphs


		Debugging


		Known limitations








		Extending Theano
		Theano Graphs


		Op Structure


		Op Example


		How To Test it
		Basic Tests


		Testing the infer_shape


		Testing the gradient


		Testing the Rop


		Testing GPU Ops








		Running Your Tests
		theano-nose


		nosetests


		In-file








		Exercise


		as_op
		as_op Example


		Exercise








		Random numbers in tests


		Documentation


		Final Note








		PyCUDA
		Introduction


		Example


		Exercise 6


		Theano + PyCUDA


		Exercises 7








		GpuNdArray













          

      

      

    


    
        © Copyright 2008--2015, LISA lab.
      Last updated on Mar 27, 2015.
      Created using Sphinx 1.2.2.
    

  

core_development_guide.html


    
      Navigation


      
        		
          index


        		
          modules |


        		Theano 0.7 documentation »

 
      


    


    
      
          
            
  
Core Development Guide


The documentation of the core components of Theano is still a work in
progress. For now this is a list of bits and pieces on the subject,
some of them might be outdated though:



		Making the double type – Tutorial for writing a new type in Theano. It
introduces the basics concerning Theano datatypes.


		Implementing double in C – Tutorial on how to make your type C-friendly.


		Views and inplace operations – This is somewhere between extending Theano and
describing how Theano works internally; it talks about views and inplace
operations.


		Graph optimization – Tutorial on how optimization work in Theano.


		Overview of the compilation pipeline – Describes the steps of compiling a Theano Function.


		Graph Structures – Describes the symbolic graphs generated by
theano.scan.


		Unit Testing – Tutorial on how to use unittest in testing Theano.


		Broadcasting – Short description of what a broadcastable
pattern is.


		Debugging with a customized so-called StepMode – How to step through the execution of
a Theano function and print the inputs and outputs of each op.


		Elemwise compiler – Description of element wise operations.


		Max Gotcha – Describes the difference between numpy.max
and Python max (something to consider when using max).


		Random Numbers – Description of how Theano deals with random
numbers.


		Sparse matrices – Description of the sparse type in Theano.
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Schedule


Theano lab sessions will be in 4 x 90 minute blocks,
on the afternoons of Aug 2, 3, 5, and 6 (but not Aug 4th).



Day 1



		Show of hands - what is your background?


		Python & NumPy in a nutshell


		Theano basics


		Quick tour through Deep Learning Tutorials (think about projects)








Day 2



		Loop/Condition in Theano (10-20m)


		Propose/discuss projects


		Form groups and start projects!








Day 3



		Advanced Theano (30 minutes)







		Debugging, profiling, compilation pipeline










		Projects / General hacking / code-sprinting.








Day 4



		You choose (we can split the group)







		Extending Theano







		How to write an Op


		How to use pycuda code in Theano














		Projects / General hacking / code-sprinting.
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Theano



Pointers



		http://deeplearning.net/software/theano/


		Announcements mailing list: http://groups.google.com/group/theano-announce


		User mailing list: http://groups.google.com/group/theano-users


		Deep Learning Tutorials: http://www.deeplearning.net/tutorial/


		Installation: https://deeplearning.net/software/theano/install.html








Description



		Mathematical symbolic expression compiler


		Dynamic C/CUDA code generation


		Efficient symbolic differentiation
		Theano computes derivatives of functions with one or many inputs.








		Speed and stability optimizations
		Gives the right answer for log(1+x) even if x is really tiny.








		Works on Linux, Mac and Windows


		Transparent use of a GPU
		float32 only for now (working on other data types)


		Still in experimental state on Windows


		On GPU data-intensive calculations are typically between 6.5x and 44x faster. We’ve seen speedups up to 140x








		Extensive unit-testing and self-verification
		Detects and diagnoses many types of errors








		On CPU, common machine learning algorithms are 1.6x to 7.5x faster than competitive alternatives
		including specialized implementations in C/C++, NumPy, SciPy, and Matlab








		Expressions mimic NumPy’s syntax & semantics


		Statically typed and purely functional


		Some sparse operations (CPU only)


		The project was started by James Bergstra and Olivier Breuleux


		For the past 1-2 years, I have replaced Olivier as lead contributor








Simple example


>>> import theano
>>> a = theano.tensor.vector("a")      # declare symbolic variable
>>> b = a + a**10                      # build symbolic expression
>>> f = theano.function([a], b)        # compile function
>>> print f([0,1,2])                   # prints `array([0,2,1026])`












		Unoptimized graph
		Optimized graph





		[image: ../_images/f_unoptimized.png]

		[image: ../_images/f_optimized.png]








Symbolic programming = Paradigm shift: people need to use it to understand it.





Exercise 1


import theano
a = theano.tensor.vector() # declare variable
out = a + a**10               # build symbolic expression
f = theano.function([a], out)   # compile function
print f([0,1,2])
# prints `array([0,2,1026])`

theano.printing.pydotprint_variables(b, outfile="f_unoptimized.png", var_with_name_simple=True)
theano.printing.pydotprint(f, outfile="f_optimized.png", var_with_name_simple=True)






Modify and execute the example to do this expression: a**2 + b**2 + 2*a*b





Real example


Logistic Regression



		GPU-ready


		Symbolic differentiation


		Speed optimizations


		Stability optimizations





import numpy
import theano
import theano.tensor as T
rng = numpy.random

N = 400
feats = 784
D = (rng.randn(N, feats), rng.randint(size=N,low=0, high=2))
training_steps = 10000

# Declare Theano symbolic variables
x = T.matrix("x")
y = T.vector("y")
w = theano.shared(rng.randn(feats), name="w")
b = theano.shared(0., name="b")
print "Initial model:"
print w.get_value(), b.get_value()

# Construct Theano expression graph
p_1 = 1 / (1 + T.exp(-T.dot(x, w)-b))     # Probability that target = 1
prediction = p_1 > 0.5                    # The prediction thresholded
xent = -y*T.log(p_1) - (1-y)*T.log(1-p_1) # Cross-entropy loss function
cost = xent.mean() + 0.01*(w**2).sum()    # The cost to minimize
gw,gb = T.grad(cost, [w,b])

# Compile
train = theano.function(
          inputs=[x,y],
          outputs=[prediction, xent],
          updates={w:w-0.1*gw, b:b-0.1*gb})
predict = theano.function(inputs=[x], outputs=prediction)

# Train
for i in range(training_steps):
    pred, err = train(D[0], D[1])

print "Final model:"
print w.get_value(), b.get_value()
print "target values for D:", D[1]
print "prediction on D:", predict(D[0])






Optimizations:


Where are those optimization applied?



		log(1+exp(x))


		1 / (1 + T.exp(var)) (sigmoid)


		log(1-sigmoid(var)) (softplus, stabilisation)


		GEMV (matrix-vector multiply from BLAS)


		Loop fusion





p_1 = 1 / (1 + T.exp(-T.dot(x, w)-b))
# 1 / (1 + T.exp(var)) -> sigmoid(var)
xent = -y*T.log(p_1) - (1-y)*T.log(1-p_1)
# Log(1-sigmoid(var)) -> -sigmoid(var)
prediction = p_1 > 0.5
cost = xent.mean() + 0.01*(w**2).sum()
gw,gb = T.grad(cost, [w,b])

train = theano.function(
          inputs=[x,y],
          outputs=[prediction, xent],
          # w-0.1*gw: GEMV with the dot in the grad
          updates={w:w-0.1*gw, b:b-0.1*gb})









Theano flags


Theano can be configured with flags. They can be defined in two ways



		With an environment variable: THEANO_FLAGS="mode=ProfileMode,ProfileMode.profile_memory=True"


		With a configuration file that defaults to ~/.theanorc








Exercise 2


import numpy
import theano
import theano.tensor as T
rng = numpy.random

N = 400
feats = 784
D = (rng.randn(N, feats).astype(theano.config.floatX),
rng.randint(size=N,low=0, high=2).astype(theano.config.floatX))
training_steps = 10000

# Declare Theano symbolic variables
x = T.matrix("x")
y = T.vector("y")
w = theano.shared(rng.randn(feats).astype(theano.config.floatX), name="w")
b = theano.shared(numpy.asarray(0., dtype=theano.config.floatX), name="b")
x.tag.test_value = D[0]
y.tag.test_value = D[1]
#print "Initial model:"
#print w.get_value(), b.get_value()


# Construct Theano expression graph
p_1 = 1 / (1 + T.exp(-T.dot(x, w)-b)) # Probability of having a one
prediction = p_1 > 0.5 # The prediction that is done: 0 or 1
xent = -y*T.log(p_1) - (1-y)*T.log(1-p_1) # Cross-entropy
cost = xent.mean() + 0.01*(w**2).sum() # The cost to optimize
gw,gb = T.grad(cost, [w,b])

# Compile expressions to functions
train = theano.function(
            inputs=[x,y],
            outputs=[prediction, xent],
            updates={w:w-0.01*gw, b:b-0.01*gb},
            name = "train")
predict = theano.function(inputs=[x], outputs=prediction,
            name = "predict")

if any( [x.op.__class__.__name__=='Gemv' for x in
train.maker.fgraph.toposort()]):
    print 'Used the cpu'
elif any( [x.op.__class__.__name__=='GpuGemm' for x in
train.maker.fgraph.toposort()]):
    print 'Used the gpu'
else:
    print 'ERROR, not able to tell if theano used the cpu or the gpu'
    print train.maker.fgraph.toposort()



for i in range(training_steps):
    pred, err = train(D[0], D[1])
#print "Final model:"
#print w.get_value(), b.get_value()

print "target values for D"
print D[1]

print "prediction on D"
print predict(D[0])

# Print the graph used in the slides
theano.printing.pydotprint(predict,
                           outfile="pics/logreg_pydotprint_predic.png",
                           var_with_name_simple=True)
theano.printing.pydotprint_variables(prediction,
                           outfile="pics/logreg_pydotprint_prediction.png",
                           var_with_name_simple=True)
theano.printing.pydotprint(train,
                           outfile="pics/logreg_pydotprint_train.png",
                           var_with_name_simple=True)






Modify and execute the example to run on CPU with floatX=float32



		You will need to use: theano.config.floatX and ndarray.astype("str")








GPU



		Only 32 bit floats are supported (being worked on)


		Only 1 GPU per process


		Use the Theano flag device=gpu to tell to use the GPU device







		Use device=gpu{0, 1, ...} to specify which GPU if you have more than one


		Shared variables with float32 dtype are by default moved to the GPU memory space










		Use the Theano flag floatX=float32







		Be sure to use floatX (theano.config.floatX) in your code


		Cast inputs before putting them into a shared variable


		Cast “problem”: int32 with float32 to float64







		A new casting mechanism is being developed


		Insert manual cast in your code or use [u]int{8,16}


		Insert manual cast around the mean operator (which involves a division by the length, which is an int64!)
















Exercise 3



		Modify and execute the example of Exercise 2 to run with floatX=float32 on GPU


		Time with: time python file.py








Symbolic variables



		# Dimensions







		T.scalar, T.vector, T.matrix, T.tensor3, T.tensor4










		Dtype







		T.[fdczbwil]vector (float32, float64, complex64, complex128, int8, int16, int32, int64)


		T.vector to floatX dtype


		floatX: configurable dtype that can be float32 or float64.










		Custom variable







		All are shortcuts to: T.tensor(dtype, broadcastable=[False]*nd)


		Other dtype: uint[8,16,32,64], floatX









Creating symbolic variables: Broadcastability



		Remember what I said about broadcasting?


		How to add a row to all rows of a matrix?


		How to add a column to all columns of a matrix?





Details regarding symbolic broadcasting...



		Broadcastability must be specified when creating the variable


		The only shorcut with broadcastable dimensions are: T.row and T.col


		For all others: T.tensor(dtype, broadcastable=([False or True])*nd)








Differentiation details


>>> gw,gb = T.grad(cost, [w,b])







		T.grad works symbolically: takes and returns a Theano variable


		T.grad can be compared to a macro: it can be applied multiple times


		T.grad takes scalar costs only


		Simple recipe allows to compute efficiently vector x Jacobian and vector x Hessian


		We are working on the missing optimizations to be able to compute efficently the full Jacobian and Hessian and Jacobian x vector








Benchmarks


Multi-Layer Perceptron:


60x784 matrix times 784x500 matrix, tanh, times 500x10 matrix, elemwise, then all in reverse for backpropagation


[image: ../_images/mlp.png]
Convolutional Network:


256x256 images convolved with 6 7x7 filters,
downsampled to 6x50x50, tanh, convolution with 16 6x7x7 filter, elementwise
tanh, matrix multiply, softmax elementwise, then in reverse


[image: ../_images/conv.png]
Elemwise



		All on CPU


		Solid blue: Theano


		Dashed Red: numexpr (without MKL)





[image: ../_images/multiple_graph.png]
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Advanced Theano



Conditions


IfElse



		Build condition over symbolic variables.


		IfElse Op takes a boolean condition and two variables to compute as input.


		While Switch Op evaluates both ‘output’ variables, IfElse Op is lazy and only
evaluates one variable respect to the condition.





IfElse Example: Comparison with Switch


from theano import tensor as T
from theano.ifelse import ifelse
import theano, time, numpy

a,b = T.scalars('a','b')
x,y = T.matrices('x','y')

z_switch = T.switch(T.lt(a,b), T.mean(x), T.mean(y))
z_lazy = ifelse(T.lt(a,b), T.mean(x), T.mean(y))

f_switch = theano.function([a,b,x,y], z_switch,
                           mode=theano.Mode(linker='vm'))
f_lazyifelse = theano.function([a,b,x,y], z_lazy,
                               mode=theano.Mode(linker='vm'))

val1 = 0.
val2 = 1.
big_mat1 = numpy.ones((10000,1000))
big_mat2 = numpy.ones((10000,1000))

n_times = 10

tic = time.clock()
for i in xrange(n_times):
    f_switch(val1, val2, big_mat1, big_mat2)
print 'time spent evaluating both values %f sec'%(time.clock()-tic)

tic = time.clock()
for i in xrange(n_times):
    f_lazyifelse(val1, val2, big_mat1, big_mat2)
print 'time spent evaluating one value %f sec'%(time.clock()-tic)






IfElse Op spend less time (about an half) than Switch since it computes only
one variable instead of both.


$ python ifelse_switch.py
time spent evaluating both values 0.6700 sec
time spent evaluating one value 0.3500 sec






Note that IfElse condition is a boolean while Switch condition is a tensor, so
Switch is more general.


It is actually important to use  linker='vm' or linker='cvm',
otherwise IfElse will compute both variables and take the same computation
time as the Switch Op. The linker is not currently set by default to ‘cvm’ but
it will be in a near future.





Loops


Scan



		General form of recurrence, which can be used for looping.


		Reduction and map (loop over the leading dimensions) are special cases of Scan


		You ‘scan’ a function along some input sequence, producing an output at each time-step


		The function can see the previous K time-steps of your function


		sum() could be computed by scanning the z + x(i) function over a list, given an initial state of z=0.


		Often a for-loop can be expressed as a scan() operation, and scan is the closest that Theano comes to looping.


		The advantage of using scan over for loops
		The number of iterations to be part of the symbolic graph


		Minimizes GPU transfers if GPU is involved


		Compute gradients through sequential steps


		Slightly faster then using a for loop in Python with a compiled Theano function


		Can lower the overall memory usage by detecting the actual amount of memory needed











Scan Example: Computing pow(A,k)


import theano
import theano.tensor as T

k = T.iscalar("k"); A = T.vector("A")

def inner_fct(prior_result, A): return prior_result * A
# Symbolic description of the result
result, updates = theano.scan(fn=inner_fct,
                            outputs_info=T.ones_like(A),
                            non_sequences=A, n_steps=k)

# Scan has provided us with A**1 through A**k.  Keep only the last
# value. Scan notices this and does not waste memory saving them.
final_result = result[-1]

power = theano.function(inputs=[A,k], outputs=final_result,
                      updates=updates)

print power(range(10),2)
#[  0.   1.   4.   9.  16.  25.  36.  49.  64.  81.]






Scan Example: Calculating a Polynomial


import theano
import theano.tensor as T

coefficients = theano.tensor.vector("coefficients")
x = T.scalar("x"); max_coefficients_supported = 10000

# Generate the components of the polynomial
full_range=theano.tensor.arange(max_coefficients_supported)
components, updates = theano.scan(fn=lambda coeff, power, free_var:
                                   coeff * (free_var ** power),
                                outputs_info=None,
                                sequences=[coefficients, full_range],
                                non_sequences=x)
polynomial = components.sum()
calculate_polynomial = theano.function(inputs=[coefficients, x],
                                     outputs=polynomial)

test_coeff = numpy.asarray([1, 0, 2], dtype=numpy.float32)
print calculate_polynomial(test_coeff, 3)






19.0









Exercise 4



		Run both examples


		Modify and execute the polynomial example to have the reduction done by scan








Compilation pipeline


[image: ../_images/pipeline.png]



Inplace optimization



		2 type of inplace operations:
		An op that return a view on its inputs (e.g. reshape, inplace transpose)


		An op that write the output on the inputs memory space








		This allows some memory optimization


		The Op must tell Theano if they work inplace


		Inplace Op add constraints to the order of execution








Profiling



		To replace the default mode with this mode, use the Theano flags mode=ProfileMode


		To enable the memory profiling use the flags ProfileMode.profile_memory=True





Theano output:


"""
Time since import 33.456s
Theano compile time: 1.023s (3.1% since import)
  Optimization time: 0.789s
  Linker time: 0.221s
Theano fct call 30.878s (92.3% since import)
 Theano Op time 29.411s 87.9%(since import) 95.3%(of fct call)
 Theano function overhead in ProfileMode 1.466s 4.4%(since import)
                                              4.7%(of fct call)
10001 Theano fct call, 0.003s per call
Rest of the time since import 1.555s 4.6%

Theano fct summary:
<% total fct time> <total time> <time per call> <nb call> <fct name>
 100.0% 30.877s 3.09e-03s 10000 train
  0.0% 0.000s 4.06e-04s 1 predict

Single Op-wise summary:
<% of local_time spent on this kind of Op> <cumulative %>
    <self seconds> <cumulative seconds> <time per call> <nb_call>
    <nb_op> <nb_apply> <Op name>
   87.3%   87.3%  25.672s  25.672s  2.57e-03s   10000  1  1 <Gemv>
    9.7% s  97.0%  2.843s  28.515s  2.84e-04s   10001  1  2 <Dot>
    2.4%   99.3%  0.691s  29.206s  7.68e-06s * 90001 10 10 <Elemwise>
    0.4%   99.7%  0.127s  29.334s  1.27e-05s   10000  1  1 <Alloc>
    0.2%   99.9%  0.053s  29.386s  1.75e-06s * 30001  2  4 <DimShuffle>
    0.0%  100.0%  0.014s  29.400s  1.40e-06s * 10000  1  1 <Sum>
    0.0%  100.0%  0.011s  29.411s  1.10e-06s * 10000  1  1 <Shape_i>
(*) Op is running a c implementation

Op-wise summary:
<% of local_time spent on this kind of Op> <cumulative %>
    <self seconds> <cumulative seconds> <time per call>
    <nb_call> <nb apply> <Op name>
   87.3%   87.3%  25.672s  25.672s  2.57e-03s   10000  1 Gemv{inplace}
    9.7%   97.0%  2.843s  28.515s  2.84e-04s   10001  2 dot
    1.3%   98.2%  0.378s  28.893s  3.78e-05s * 10000  1 Elemwise{Composite{scalar_softplus,{mul,scalar_softplus,{neg,mul,sub}}}}
    0.4%   98.7%  0.127s  29.021s  1.27e-05s   10000  1 Alloc
    0.3%   99.0%  0.092s  29.112s  9.16e-06s * 10000  1 Elemwise{Composite{exp,{mul,{true_div,neg,{add,mul}}}}}[(0, 0)]
    0.1%   99.3%  0.033s  29.265s  1.66e-06s * 20001  3 InplaceDimShuffle{x}
   ... (remaining 11 Apply account for 0.7%(0.00s) of the runtime)
(*) Op is running a c implementation

Apply-wise summary:
<% of local_time spent at this position> <cumulative %%>
    <apply time> <cumulative seconds> <time per call>
    <nb_call> <Apply position> <Apply Op name>
   87.3%   87.3%  25.672s  25.672s 2.57e-03s  10000  15 Gemv{inplace}(w, TensorConstant{-0.01}, InplaceDimShuffle{1,0}.0, Elemwise{Composite{exp,{mul,{true_div,neg,{add,mul}}}}}[(0, 0)].0, TensorConstant{0.9998})
    9.7%   97.0%  2.843s  28.515s 2.84e-04s  10000   1 dot(x, w)
    1.3%   98.2%  0.378s  28.893s 3.78e-05s  10000   9 Elemwise{Composite{scalar_softplus,{mul,scalar_softplus,{neg,mul,sub}}}}(y, Elemwise{Composite{neg,sub}}[(0, 0)].0, Elemwise{sub,no_inplace}.0, Elemwise{neg,no_inplace}.0)
    0.4%   98.7%  0.127s  29.020s 1.27e-05s  10000  10 Alloc(Elemwise{inv,no_inplace}.0, Shape_i{0}.0)
    0.3%   99.0%  0.092s  29.112s 9.16e-06s  10000  13 Elemwise{Composite{exp,{mul,{true_div,neg,{add,mul}}}}}[(0,0)](Elemwise{ScalarSigmoid{output_types_preference=transfer_type{0}, _op_use_c_code=True}}[(0, 0)].0, Alloc.0, y, Elemwise{Composite{neg,sub}}[(0,0)].0, Elemwise{sub,no_inplace}.0, InplaceDimShuffle{x}.0)
    0.3%   99.3%  0.080s  29.192s 7.99e-06s  10000  11 Elemwise{ScalarSigmoid{output_types_preference=transfer_type{0}, _op_use_c_code=True}}[(0, 0)](Elemwise{neg,no_inplace}.0)
   ... (remaining 14 Apply instances account for
       0.7%(0.00s) of the runtime)

Profile of Theano functions memory:
(This check only the output of each apply node. It don't check the temporary memory used by the op in the apply node.)
Theano fct: train
    Max without gc, inplace and view (KB) 2481
    Max FAST_RUN_NO_GC (KB) 16
    Max FAST_RUN (KB) 16
    Memory saved by view (KB) 2450
    Memory saved by inplace (KB) 15
    Memory saved by GC (KB) 0
    <Sum apply outputs (bytes)> <Apply outputs memory size(bytes)>
        <created/inplace/view> <Apply node>
    <created/inplace/view> is taked from the op declaration, not ...
         2508800B  [2508800] v InplaceDimShuffle{1,0}(x)
            6272B  [6272] i Gemv{inplace}(w, ...)
            3200B  [3200] c Elemwise{Composite{...}}(y, ...)

Here are tips to potentially make your code run faster (if you think of new ones, suggest them on the mailing list).
Test them first, as they are not guaranteed to always provide a speedup.
  - Try the Theano flag floatX=float32
"""









Exercise 5



		In the last exercises, do you see a speed up with the GPU?


		Where does it come from? (Use ProfileMode)


		Is there something we can do to speed up the GPU version?








Printing/Drawing Theano graphs



		Pretty Printing





theano.printing.pprint(variable)


>>> theano.printing.pprint(prediction) 
gt((TensorConstant{1} / (TensorConstant{1} + exp(((-(x \\dot w)) - b)))),TensorConstant{0.5})







		Debug Print





theano.printing.debugprint({fct, variable, list of variables})


>>> theano.printing.debugprint(prediction) 
Elemwise{gt,no_inplace} [@181772236] ''
 |Elemwise{true_div,no_inplace} [@181746668] ''
 | |InplaceDimShuffle{x} [@181746412] ''
 | | |TensorConstant{1} [@181745836]
 | |Elemwise{add,no_inplace} [@181745644] ''
 | | |InplaceDimShuffle{x} [@181745420] ''
 | | | |TensorConstant{1} [@181744844]
 | | |Elemwise{exp,no_inplace} [@181744652] ''
 | | | |Elemwise{sub,no_inplace} [@181744012] ''
 | | | | |Elemwise{neg,no_inplace} [@181730764] ''
 | | | | | |dot [@181729676] ''
 | | | | | | |x [@181563948]
 | | | | | | |w [@181729964]
 | | | | |InplaceDimShuffle{x} [@181743788] ''
 | | | | | |b [@181730156]
 |InplaceDimShuffle{x} [@181771788] ''
 | |TensorConstant{0.5} [@181771148]
>>> theano.printing.debugprint(predict) 
Elemwise{Composite{neg,{sub,{{scalar_sigmoid,GT},neg}}}} [@183160204] ''   2
 |dot [@183018796] ''   1
 | |x [@183000780]
 | |w [@183000812]
 |InplaceDimShuffle{x} [@183133580] ''   0
 | |b [@183000876]
 |TensorConstant{[ 0.5]} [@183084108]







		Picture Printing of Graphs





>>> theano.printing.pydotprint_variables(prediction) 






[image: ../_images/logreg_pydotprint_prediction.png]
All pydotprint* requires graphviz and pydot


>>> theano.printing.pydotprint(predict) 






[image: ../_images/logreg_pydotprint_predic.png]
>>> theano.printing.pydotprint(train) # This is a small train example! 






[image: ../_images/logreg_pydotprint_train.png]



Debugging



		Run with the flag mode=DebugMode
		100-1000x slower


		Test all optimization steps from the original graph to the final graph


		Checks many things that Op should/shouldn’t do


		Executes both the Python and C code versions








		Run with the Theano flag compute_test_value = {``off'',``ignore'', ``warn'', ``raise''}
		Run the code as we create the graph


		Allows you to find the bug earlier (ex: shape mismatch)


		Makes it easier to identify where the problem is in your code


		Use the value of constants and shared variables directly


		For pure symbolic variables uses x.tag.test_value = numpy.random.rand(5,10)








		Run with the flag mode=FAST_COMPILE
		Few optimizations


		Run Python code (better error messages and can be debugged interactively in the Python debugger)














Known limitations



		Compilation phase distinct from execution phase


		Compilation time can be significant
		Amortize it with functions over big input or reuse functions








		Execution overhead
		Needs a certain number of operations to be useful


		We have started working on this in a branch








		Compilation time superlinear in the size of the graph.
		A few hundreds nodes is fine


		Disabling a few optimizations can speed up compilation


		Usually too many nodes indicates a problem with the graph
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Debugging with a customized so-called StepMode


One convenient trick I’ve found for debugging my programs that are running with theano is to
use what I call a ‘StepMode’.  There is no such StepMode in the standard library because the
purpose of it is to hack it to investigate what your own particular program is doing.


from theano.gof.link import WrapLinkerMany
from theano import config
from theano.compile.mode import (Mode, register_mode, predefined_modes, predefined_linkers,
        predefined_optimizers)

class StepMode(Mode):
    def __init__(self, linker=None, optimizer='default'):
        if linker is None:
            linker = config.linker
        if optimizer is 'default':
            optimizer = config.optimizer
        def blah(i, node, th):
            # This function will be run for each node in your compiled program.
            # here you can inspect all the values as they are computed,
            # ... you can even change them !

            # 'i' is the execution position in the serialized graph
            # node is the symbolic Apply instance
            # th is a callable thing that will compute the node.

            print i, node, len(th.inputs)

            # the symbolic inputs of the node are in node.inputs
            # the j'th non-symbolic input of the node is in th.inputs[j][0]

            th() # call the function to actually 'run' the graph

            # the symbolic outputs of the node are in node.outputs
            # the j'th non-symbolic output of the node is in th.outputs[j][0]

            print type(th.outputs[0][0])

            if i == 39:
                print 'this node is weird...', th.outputs[0][0]


        self.provided_linker = linker
        self.provided_optimizer = optimizer
        if isinstance(linker, basestring) or linker is None:
            linker = predefined_linkers[linker]

        self.linker = WrapLinkerMany([linker], [blah])

        if isinstance(optimizer, basestring) or optimizer is None:
            optimizer = predefined_optimizers[optimizer]
        self._optimizer = optimizer






The way to use it is like this:


fn = function(inputs, outputs, mode=StepMode())






When you call fn, your function in the stepmode will be called for each node in the compiled
program.  You can print out some or all of the values, you can change them in mid-execution.
You can see where bizarre values are first occurring in your computations.  It’s a very
powerful way to understand your program’s execution.


Remember, if you give names your variables then printing nodes will give you a better idea of
where in the calculations you are.
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  Basically, this file contains stuff that should be documented, but is not.


Feel free to contribute things that you want documented, as well as to add
or correct documentation.



How do you define the grad function?


Let’s talk about defining the grad() function in an Op, using an
illustrative example.


In Poisson regression (Ranzato and Szummer, 2008), the target t is
integer data, which we predict using a continuous output o.
In the negative log likelihood of the Poisson regressor, there is a term:



[image: \log(t!)]



Let’s say we write a logfactorial Op. We then compute the gradient


You should define gradient, even if it is undefined.
[give log factorial example]


If an Op does not define grad, but this Op does not appear in the path when
you compute the gradient, then there is no problem.


If an Op does not define grad, and this Op does appear in the path when
you compute the gradient, WRITEME.


Gradients for a particular variable can be one of four kinds:
1) forgot to implement it


You will get an exception of the following form.


theano.gof.utils.MethodNotDefined: (‘grad’, <class ‘pylearn.algorithms.sandbox.cost.LogFactorial’>, ‘LogFactorial’)



		a symbolic variable


		None / zero


		undefined mathematically





currently, there is no way for a grad() method to distinguish between cases 3
and 4
but the distinction is important because graphs with type-3 gradients are ok
to run, whereas graphs with type-4 gradients are not.
so I suggested that Joseph return a type-4 gradient by defining an Op with no
perform method.
the idea would be that this would suit the graph-construction phase, but would
prevent linking.
how does that sound to you?


This documentation is useful when we show users how to write Ops.





What is staticmethod, st_impl?


st_impl is an optional method in an Op.
@staticmethod is a Python decorator for a class method that does not
implicitly take the class instance as a first argument. Hence, st_impl
can be used for Op implementations when no information from the Op
instance is needed. This can be useful for testing an implementation.
See the XlogX class below for an example.


This documentation is useful when we show users how to write Ops.
Olivier says this behavior should be discouraged but I feel that st_impl
should be encouraged where possible.





how do we write scalar ops and upgrade them to tensor ops?


Olivier says that XlogX gives a good example. In fact, I would
like to beef xlogx up into our running example for demonstrating how to
write an Op:


class XlogX(scalar.UnaryScalarOp):
    """
    Compute X * log(X), with special case 0 log(0) = 0.
    """
    @staticmethod
    def st_impl(x):
        if x == 0.0:
            return 0.0
        return x * numpy.log(x)
    def impl(self, x):
        return XlogX.st_impl(x)
    def grad(self, inp, grads):
        x, = inp
        gz, = grads
        return [gz * (1 + scalar.log(x))]
    def c_code(self, node, name, inp, out, sub):
        x, = inp
        z, = out
        if node.inputs[0].type in [scalar.float32, scalar.float64]:
            return """%(z)s =
                %(x)s == 0.0
                ? 0.0
                : %(x)s * log(%(x)s);""" % locals()
        raise NotImplementedError('only floatingpoint is implemented')
scalar_xlogx  = XlogX(scalar.upgrade_to_float, name='scalar_xlogx')
xlogx = tensor.Elemwise(scalar_xlogx, name='xlogx')






It is also necessary to talk about UnaryScalarOp vs. BinaryOp.


UnaryScalarOp is the same as scalar.ScalarOp with member variable nin=1.
give an example of this





Documentation on how to write tests


Guillaume can you make sure to hit these points:




		What are canonical examples of tests?




		What are the different test patterns?












		nnet.py:




		What is going on with test1, test2, test3, test4?












		What is the right eq function to use?




		There are a lot of tests that define their own epsilon, but this should be standardized.  e.g. in test_elemwise.py self.assertTrue((numpy.abs(f(xv) - zv) < 1e-10).all())












		If the expected variable of a test is that an Exception is thrown, how do we correctly detect and handle that?



nosetests has assertRaises









		
		Convention is that all test files must start with test_, not


		_test_, so rename all that use the old convention?





















How to use the PrintOp


** This is also useful in the How to write an Op tutorial. **





Mammouth


This is internal documentation. Guillaume can you make sure to hit these points:


export THEANO_BLAS_LDFLAGS=’-lmkl -liomp5 -fopenmp’


Do we want the following:


export OMP_NUM_THREADS=2





Type checking




		
		Are there functions for doing type checking?


		like dtype of this matrix is an int-type (not just int32
or int64)
“if isinstance(item, int):” is the preferred way to do it in
python now, so mimic this
If the type is wrong, what exception should be raised?





















More simple numpy stuff




		
		If we have a matrix with only one row, how do we convert it to a vector?


		x.reshape(x.size)
You can also use resize but there is not reason to ‘’resize’‘











		
		How do you convert the type of a numpy array?


		theano._asarray(x, dtype = 'int32')
Note that using numpy.asarray is potentially dangerous, due to
a problem in numpy where the type may not be properly set (see
numpy’s Track ticket #870).





















How to reuse (overwrite) a storage tensor


theano.compile.io.Out(gw1, borrow = True) for that value in
compile.function
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GpuNdArray


Why a common GPU ndarray?



		Currently there are at least 4 different GPU array data structures in use by Python packages
		CudaNdarray (Theano), GPUArray (PyCUDA), CUDAMatrix (cudamat), GPUArray (PyOpenCL), ...


		There are even more if we include other languages








		All of them are a subset of the functionality of numpy.ndarray on the GPU


		Lots of duplicated effort
		GPU code is harder/slower to do {bf correctly} and {bf fast} than on the CPU/Python








		Lack of a common array API makes it harder to port/reuse code


		Also harder to find/distribute code


		Divides development work





Design Goals



		Make it VERY similar to numpy.ndarray


		Be compatible with both CUDA and OpenCL


		Have the base object accessible from C to allow collaboration with more projects, across high-level languages
		We want people from C, C++, Ruby, R, ... all use the same base GPU N-dimensional array











Final GpuNdArray Note



		Under development


		Will be the next GPU array container for Theano (this summer!)


		Probably also for PyCUDA, PyOpenCL


		Mailing list: http://lists.tiker.net/listinfo/gpundarray
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PyCUDA



Introduction


Authors: Andreas Klockner



		PyCUDA can access Nvidia’s CUDA parallel computation API from Python


		Object cleanup tied to lifetime of objects (RAII, Resource Acquisition Is Initialization).
		Makes it much easier to write correct, leak- and crash-free code


		PyCUDA knows about dependencies (e.g.. it won’t detach from a context before all memory allocated in it is also freed)








		Convenience
		Abstractions to compile CUDA code from Python: pycuda.driver.SourceModule


		A GPU memory buffer: texttt{pycuda.gpuarray.GPUArray}








		Completeness
		Binding to all of CUDA’s driver API








		Automatic Error Checking
		All CUDA errors are automatically translated into Python exceptions








		Speed
		PyCUDA’s base layer is written in C++








		Helpful documentation








Example


import pycuda.autoinit
import pycuda.driver as drv
import numpy

from pycuda.compiler import SourceModule
mod = SourceModule("""
__global__ void multiply_them(float *dest, float *a, float *b)
{
  const int i = threadIdx.x;
  dest[i] = a[i] * b[i];
}
""")

multiply_them = mod.get_function("multiply_them")

a = numpy.random.randn(400).astype(numpy.float32)
b = numpy.random.randn(400).astype(numpy.float32)

dest = numpy.zeros_like(a)
multiply_them(
        drv.Out(dest), drv.In(a), drv.In(b),
        block=(400,1,1), grid=(1,1))

assert numpy.allclose(dest, a*b)
print dest









Exercise 6



		Run the above example


		Modify and execute it to work for a matrix of 20 x 10








Theano + PyCUDA


import numpy, theano
import theano.misc.pycuda_init
from pycuda.compiler import SourceModule
import theano.sandbox.cuda as cuda

class PyCUDADoubleOp(theano.Op):
    def __eq__(self, other):
        return type(self) == type(other)
    def __hash__(self):
        return hash(type(self))
    def __str__(self):
        return self.__class__.__name__
    def make_node(self, inp):
        inp = cuda.basic_ops.gpu_contiguous(
           cuda.basic_ops.as_cuda_ndarray_variable(inp))
        assert inp.dtype == "float32"
        return theano.Apply(self, [inp], [inp.type()])
    def make_thunk(self, node, storage_map, _, _2):
        mod = SourceModule("""
    __global__ void my_fct(float * i0, float * o0, int size) {
    int i = blockIdx.x*blockDim.x + threadIdx.x;
    if(i<size){
        o0[i] = i0[i]*2;
    }
  }""")
        pycuda_fct = mod.get_function("my_fct")
        inputs = [ storage_map[v] for v in node.inputs]
        outputs = [ storage_map[v] for v in node.outputs]
        def thunk():
            z = outputs[0]
            if z[0] is None or z[0].shape!=inputs[0][0].shape:
                z[0] = cuda.CudaNdarray.zeros(inputs[0][0].shape)
            grid = (int(numpy.ceil(inputs[0][0].size / 512.)),1)
            pycuda_fct(inputs[0][0], z[0], numpy.intc(inputs[0][0].size),
                       block=(512,1,1), grid=grid)
        return thunk






Test it!


>>> x = theano.tensor.fmatrix() 
>>> f = theano.function([x], PyCUDADoubleOp()(x)) 
>>> xv=numpy.ones((4,5), dtype="float32") 
>>> assert numpy.allclose(f(xv), xv*2) 
>>> print numpy.asarray(f(xv)) 









Exercises 7



		Run the above example


		Modify and execute the example to multiple two matrix: x * y


		Modify and execute the example to return 2 outputs: x + y and x - y
		Our current elemwise fusion generate computation with only 1 outputs








		Modify and execute the example to support stride? (Don’t force the input to be c contiguous)
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How to Make Ops



Parametrization


An Op class can represent one or a wide variety of functions depending on how you choose to parametrize it. The parameters of an Op do not show up in the structure of the computation graph - they are local to the Op. [What does the last sentence mean? What is its effect?] When an Op’s make_node function is called on an Op instance with a list of inputs, the computation that is performed depends on the type and value of those inputs and on the internal parameters of the Op.


It is not always obvious what should be a parameter and what should be an input. For example, a generic indexing Op could take a list and an index as graph inputs, whereas a specific indexing Op could have an index parameter, so you could have a specialized Op instance to fetch the nth element of a list, where n is known statically. [Could you give some advice about the relative tradeoffs of having something as a parameter and something as an input?]



		Examples of parameterized Ops in theano:


		
		Broadcast(<scalar op>, <inplace?>)


		upgrades an op that works on scalars so it works on tensors. Can work inplace or not.


		Reduce(<scalar op>, <axes>)


		reduces the specified axes using the provided scalar op.


		Add(<output type inferrer>)


		adds scalars and puts the variable in a scalar whose type is inferred from the input types using output_type_inferrer(*inputs)


		Composite(<graph>)


		makes a single Op out of a graph of scalar operations.











[These examples are a little abstract. I’m not sure what are the inputs and what are the parameters. Maybe also give like something that has a random seed.]



		Ideas:


		
		MyOp(<debug>)


		prints debugging information in perform or the C implementation if debug is True.


		MyOp(<allow C>)


		always use the python implementation if allow C is False (raise an exception in c_code)












__eq__, __ne__ and __hash__


In order for certain optimizations to apply (such as the merging of duplicate calculations by MergeOptimizer), it is necessary for Ops that do the same thing to compare equal.  If Op instances are generated by a function call (for example) then it can happen that several different Op instances do the same thing; in that case you will have to override __eq__, __ne__, and __hash__ for the MergeOptimizer to recognize them as equal.


Recall: the contract for __hash__ is that a == b implies hash(a) == hash(b).







make_node


The make_node method is expected to have the following signature:


make_node(self, *inputs)






inputs may be a list of anything that the user wants to provide as symbolic input (symbolic: standing for the actual values that will be passed when the graph is compiled into an executable function). [The Theano intro should describe symbolic in greater depth, and we should link to that from here.] This may or may not include Variable instances (but if you want the inputs of this Op to sometimes be outputs of another Op, then the inputs should be Variable instances). [What else could they be? Constant, Values, ...] The return value should be an instance of [GraphStructures Apply] (see the example below). Here are the tasks typically handled in make_node.




		Check that the inputs are valid (type checking, etc.). [Since we don’t actually have values, what can we do besides type checking?]


		If needed, wrap the inputs in Variable instances with the proper type.


		Make the Variable instances that will serve as the outputs of the node.


		return Apply(self, <wrapped inputs>, <outputs>)









The inputs and outputs arguments to Apply must be lists of Variable instances (or instances of subclasses of Variable). The inputs given to Apply do not have to be the same as the inputs passed to make_node, but it is recommended that the order corresponds. [why?] The behavior of make_node should not depend on the structure of the graph of [or?] its inputs: it may look at the type and type fields of its inputs, but not at their owner field, because modifications to the graph structure do not use make_node. [???]


Example:


from theano.scalar import *

class Add(Op):
    #...
    def make_node(self, x, y):
        # note 1: constant, int64 and Scalar are defined in theano.scalar
        # note 2: constant(x) is equivalent to Constant(type = int64, data = x)
        # note 3: the call int64() is equivalent to Variable(type = int64) or Variable(type = Scalar(dtype = 'int64'))
        if isinstance(x, int):
            x = constant(x)
        elif not isinstance(x, Variable) or not x.type == int64:
            raise TypeError("expected an int64 Scalar")
        if isinstance(y, int):
            y = constant(y)
        elif not isinstance(y, Variable) or not x.type == int64:
            raise TypeError("expected an int64 Scalar")
        inputs = [x, y]
        outputs = [int64()]
        node = Apply(op = self, inputs = inputs, outputs = outputs)
        return node
    #...

add = Add()                               # I make an instance of Add
node1 = add.make_node(int64(), int64())   # I make a node with two Variable inputs
node2 = add.make_node(1, 2)               # this works too
node3 = add.make_node(int64(), 79)        # this works three
node4 = add.make_node(float64(), int64()) # this raises a TypeError






[What type is an instance of Add? It’s an Apply? But that’s not a Variable, and cannot be used as input for another Op.]



		Two Apply nodes node1 and node2 are assumed by the compiler to represent the same behavior if:


		1. node1.op == node2.op
1. all(input1.type == input2.type for input1, input2 in zip(node1.inputs, node2.inputs))
1. all(output1.type == output2.type for output1, output2 in zip(node1.outputs, node2.outputs))





It is considered an error to have conditions 1 and 2 but not condition 3. A corollary to those conditions is that repeated calls to make_node with the same inputs should produce equivalent nodes.



__call__


In Op, __call__ is defined in terms of make_node. Instead of returning a node, it returns the output Variables directly, which is practical from a UI standpoint. Here is pseudocode:


if len(outputs) is 1:
    __call__(*inputs) <=> make_node(*inputs).outputs[0]
else:
    __call__(*inputs) <=> make_node(*inputs).outputs






It is not necessary or recommended to override __call__ unless you want to hide some outputs from view (see hidden outputs section).







perform


The perform method is expected to have the following signature:


``
perform(self, node, inputs, output_storage)
``



		Where:


		
		node: a pointer to an Apply instance - node is assumed to be produced by a previous call to self.make_node.


		inputs: not the same as node.inputs - it is a list of values. [i.e. actually data, not just symbolic stuff?]


		output_storage: not the same as node.outputs - it is a list of lists of length 1 where the variables of the computation must be put.











[Can you explain better how inputs is not node.inputs and output_storage is not node.outputs?]


[Would it be better to call inputs as ‘inputs_storage’?]


Here is an example of a properly defined perform:


    class Add(Op):
        ...
        def perform(self, node, inputs, output_storage):
            # this does z = x + y
            x, y = inputs        # extract the two inputs
            z, = output_storage  # extract the one storage (the comma after z is not optional)
            z[0] = x + y         # we must put the variable in z[0]
        ...

    add = Add()                               # I make an instance of Add
    node = add.make_node(int64(), int64())    # I make a node with two integer inputs
    storage = [None]                          # I make my storage as a 1-element list with None
    add.perform(node, (3, 7), (storage, ))    # I provide the node, two inputs and storage for one output
print storage[0]                          # prints 10






[Why is node never used in the perform function? Why is self never used?]


[What does the comma after z do? Why is it not optional?]


The node parameter is not always needed, but might come in handy sometimes [when?]. There are as many entries in output_storage as there are in node.outputs and each entry is a list of length 1. The outputs must be computed from the inputs and put in those lists. The lists in output_storage must not be resized - the only allowed operation is to set or read their first element. [Since these instructions correspond to more general principles, could you state the principles of the contract more generally and put it __above__ the example?]



reusing outputs


The output storage in output_storage might not be empty. In fact, whatever the op allocates to store the computation and puts in the storage might still be there the second time around. [huh?] This is an intended feature and it is acceptable for perform to reuse what is in the output storage if it is worth it. For example, if perform must add two 1000x1000 matrices into a new matrix of the same size and that there is already a 1000x1000 matrix in the corresponding output storage, it may reuse it and thus save a lot in memory and allocation time. It may also freely discard what is already there.


Note that it is not guaranteed that the outputs will stick around. Indeed, the linker may, at its discretion, clean them up. It is not guaranteed either (though it will usually be the case) that the contents of the output storage was allocated by a previous call to perform. It is however guaranteed that the contents are either None or a structure of the proper type which it can use.


If the contents of the storage are None, new storage is expected for that output (typical case is that we “gave” the output to the user so we don’t own it anymore). Therefore, it is not acceptable to have a private cache of previously allocated storage unless you know what you are doing.


Advanced note: for an Op with multiple outputs, it is possible that some of them can be reused and some others not. If an Op with multiple outputs shares storage between them, e.g. the first output is a view of the second, if the first output is reset to None, the second should not be reused, even if it’s available, because a fresh output is expected for the first. It is not recommended in general to share storage between outputs unless one of them is hidden (see hidden outputs section), because the engine does not know how to handle that situation safely.







grad


grad is a theano-specific [as opposed to?]  function - it does not interface with core optimization and compilation facilities, but it provides a useful interface to differentiation. Its expected signature is:


grad(self, inputs, output_gradients)







		where:


		
		inputs is a list of Variable instances. It is assumed to be the inputs field of a node produced by make_node.


		output_gradients is a list of Variable instances. They have the same properties as the outputs of the node, but are filled with gradient values.











Essentially, the semantics are:


# Not completely sure about this, James should doublecheck -jpt and ob
def grad(self, (x, ), (gz, )):
   return [gz * (dz/dx)]
def grad(self, (x, y), (gz, )):
   return gz*(dz/dx), gz*(dz/dy)
def grad(self, (x, y), (gz, gw)):
   # In this situation you want two return values that have the shape of x and y respectively
   return gz*dz/dx + gw*dw/dx, gz*dz/dy + gw*dw/dy






More specifically,
grad must return a list or tuple of input gradients, as many as there are inputs. Let C be a Variable (currently assumed to be a scalar) that depends through a theano symbolic expression on the node outputs. Then each output_gradients[i] represents symbolically dC/doutputs[i]. The returned input gradients should represent symbolically dC/dinputs[i].


Example:


class Mul(Op):
    ...
    def grad(self, inputs, output_gradients):
        x, y = inputs
        gz, = output_gradients   # here again, the comma is not optional
        return mul(gz, y), mul(gz, x)
    ...
mul = Mul()






If the op is not differentiable wrt one of its inputs, the gradient for that input should be None; if the op is not differentiable with respect to any of its inputs, it should return something equivalent to
[None] * len(inputs).  If grad is not implemented for any op in a graph, then the symbolic gradient engine will complain (with an attribute exception).



		If the op only has one input, be careful to still return a list or tuple:


		
		fine: return gx,


		fine: return [gx]


		not fine: return gx











The [http://www.iro.umontreal.ca/~pift6266/A06/cours/gradient.pdf principle] behide this is explaned in section 2.





Destroyers and viewers



Destroyers


An Op may change the contents of its inputs. For example, z = add_inplace(x, y) will increment x with y, erasing the previous contents of x. z represents x after it was incremented. However, the engine needs to be told about all this so it can guarantee that add_inplace will only be executed as soon as we don’t need x anywhere else.


This is done by setting the destroy_map field of the op. destroy_map must be a dictionary which associates an output index or None to a list of input indices that are destroyed by that output. For example, add_inplace.destroy_map == {0: [0]} because the first input is overwritten by the first output. If it was y that was overwritten, then destroy_map would be {0: [1]}, because the second input is overwritten by the first output. In a nutshell, to each output must correspond the list of inputs that were changed and share storage with that output. Use None if the inputs were only destroyed to do temporary calculations, etc. and are not reused as the output storage.





Viewers


Similarly, an Op might not modify the inputs, but return an output which shares state with one or several of its inputs. For example, transpose can be done efficiently by viewing the same data as the original with modified dimensions and strides. That is fine, but the compiler needs to be told.


This is done by setting the view_map field of the op. It works like the destroy_map field: to an output index is associated the list of inputs that it shares state with. For example, transpose.view_map == {0: [0]} because its first output uses the same data as its first input. view_map is conservative: if there is any probability that an output will be the view of an input, that input must be in the view list of that output.


Important note: currently, an output can only be the view of one input. This is limiting, as an ‘if’ or ‘switch’ op would need to declare its output as a view of both its then and else branches, but for the time being the framework is not powerful enough to handle it. A future version should address this issue.







Hidden outputs (as a form of op state)


For performance purposes, an op might want to have a hidden internal state.


Example: if we expect to call the op repeatedly on incrementally bigger inputs, we might want private output storage that’s a lot bigger than needed and take incrementally bigger views on it, to save allocation overhead. In order to do this, we can have two outputs: one that we will return normally and will contain the answer and the other that will be the (larger) container. In this case, the advanced note in the ‘reusing outputs’ section applies. Furthermore, __call__ should be overriden to only return the first output instead of both of them. Here is what the example’s perform and __call__ would look like:


class Add(Op):
    """
    Use a hidden buffer to prevent unnecessary reallocation of memory.
    """
    default_output = 0
    def make_node(self, x, y):
        return Apply(self, [x,y], [x.type.make_variable(), x.type.make_variable()])

    def perform(self, node, (x, y), (z, stor)):
        if z[0] is None or stor[0] is None:
            stor[0] = numpy.ndarray(x.size * 2)
        else:
            if x.size > stor[0].size:
                stor[0].resize(x.size * 2, refcheck = 0)
        z[0] = stor[0][:x.size]
        numpy.add(x, y, z[0])
...






Another example: for a FFTW Op, we would like to cache FFTW’s plan along
with the inputs it was computed on, so we can reuse it if the inputs
are similar to the previous ones.


It is also possible but potentially more complicated to use “private
inputs” to do the same thing: inputs cannot be set, though their contents
can be modified, so a wrapper would be needed and the input must be
marked as ‘destroyed’ by the Op using the ‘destroy_map’ field.
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Introduction



Background Questionaire



		Who has used Theano before?







		What did you do with it?










		Who has used Python? NumPy? SciPy? matplotlib?


		Who has used iPython?







		Who has used it as a distributed computing engine?










		Who has done C/C++ programming?


		Who has organized computation around a particular physical memory layout?


		Who has used a multidimensional array of >2 dimensions?


		Who has written a Python module in C before?







		Who has written a program to generate Python modules in C?










		Who has used a templating engine?


		Who has programmed a GPU before?







		Using OpenGL / shaders ?


		Using CUDA (runtime? / driver?)


		Using PyCUDA ?


		Using OpenCL / PyOpenCL ?


		Using cudamat / gnumpy ?


		Other?










		Who has used Cython?








Python in one slide



		General-purpose high-level OO interpreted language


		Emphasizes code readability


		Comprehensive standard library


		Dynamic type and memory management


		Built-in types: int, float, str, list, dict, tuple, object


		Slow execution


		Popular in web-dev and scientific communities





#######################
# PYTHON SYNTAX EXAMPLE
#######################
a = 1                     # no type declaration required!
b = (1, 2, 3)             # tuple of three int literals
c = [1, 2, 3]             # list of three int literals
d = {'a': 5, b: None}     # dictionary of two elements
                          # N.B. string literal, None

print d['a']              # square brackets index
# -> 5
print d[(1, 2, 3)]        # new tuple == b, retrieves None
# -> None
print d[6]
# raises KeyError Exception

x, y, z = 10, 100, 100    # multiple assignment from tuple
x, y, z = b               # unpacking a sequence

b_squared = [b_i**2 for b_i in b]  # list comprehension

def foo(b, c=3):          # function w default param c
    return a + b + c      # note scoping, indentation

foo(5)                    # calling a function
# -> 1 + 5 + 3 == 9       # N.B. scoping
foo(b=6, c=2)             # calling with named args
# -> 1 + 6 + 2 == 9

print b[1:3]              # slicing syntax

class Foo(object):        # Defining a class
    def __init__(self):
        self.a = 5
    def hello(self):
        return self.a

f = Foo()                 # Creating a class instance
print f.hello()           # Calling methods of objects
# -> 5

class Bar(Foo):           # Defining a subclass
    def __init__(self, a):
        self.a = a

print Bar(99).hello()     # Creating an instance of Bar
# -> 99









NumPy in one slide



		Python floats are full-fledged objects on the heap







		Not suitable for high-performance computing!










		NumPy provides a N-dimensional numeric array in Python







		Perfect for high-performance computing.










		NumPy provides







		elementwise computations


		linear algebra, Fourier transforms


		pseudorandom numbers from many distributions










		SciPy provides lots more, including







		more linear algebra


		solvers and optimization algorithms


		matlab-compatible I/O


		I/O and signal processing for images and audio









##############################
# Properties of NumPy arrays
# that you really need to know
##############################

import numpy as np          # import can rename
a = np.random.rand(3, 4, 5) # random generators
a32 = a.astype('float32')   # arrays are strongly typed

a.ndim                      # int: 3
a.shape                     # tuple: (3, 4, 5)
a.size                      # int: 60
a.dtype                     # np.dtype object: 'float64'
a32.dtype                   # np.dtype object: 'float32'






Arrays can be combined with numeric operators, standard mathematical
functions. NumPy has great documentation [http://docs.scipy.org/doc/numpy/reference/].


Training an MNIST-ready classification neural network in pure NumPy might look like this:


#########################
# NumPy for Training a
# Neural Network on MNIST
#########################

x = np.load('data_x.npy')
y = np.load('data_y.npy')
w = np.random.normal(
    avg=0,
    std=.1,
    size=(784, 500))
b = np.zeros((500,))
v = np.zeros((500, 10))
c = np.zeros((10,))

batchsize = 100
for i in xrange(1000):
    x_i = x[i * batchsize: (i + 1) * batchsize]
    y_i = y[i * batchsize: (i + 1) * batchsize]

    hidin = np.dot(x_i, w) + b

    hidout = np.tanh(hidin)

    outin = np.dot(hidout, v) + c
    outout = (np.tanh(outin) + 1) / 2.0

    g_outout = outout - y_i
    err = 0.5 * np.sum(g_outout ** 2)

    g_outin = g_outout * outout * (1.0 - outout)

    g_hidout = np.dot(g_outin, v.T)
    g_hidin = g_hidout * (1 - hidout ** 2)

    b -= lr * np.sum(g_hidin, axis=0)
    c -= lr * np.sum(g_outin, axis=0)
    w -= lr * np.dot(x_i.T, g_hidin)
    v -= lr * np.dot(hidout.T, g_outin)









What’s missing?



		Non-lazy evaluation (required by Python) hurts performance


		NumPy is bound to the CPU


		NumPy lacks symbolic or automatic differentiation





Now let’s have a look at the same algorithm in Theano, which runs 15 times faster if
you have GPU (I’m skipping some dtype-details which we’ll come back to).


#########################
# Theano for Training a
# Neural Network on MNIST
#########################

import numpy as np

import theano
import theano.tensor as tensor

x = np.load('data_x.npy')
y = np.load('data_y.npy')

# symbol declarations
sx = tensor.matrix()
sy = tensor.matrix()
w = theano.shared(np.random.normal(avg=0, std=.1,
                                   size=(784, 500)))
b = theano.shared(np.zeros(500))
v = theano.shared(np.zeros((500, 10)))
c = theano.shared(np.zeros(10))

# symbolic expression-building
hid = tensor.tanh(tensor.dot(sx, w) + b)
out = tensor.tanh(tensor.dot(hid, v) + c)
err = 0.5 * tensor.sum(out - sy) ** 2
gw, gb, gv, gc = tensor.grad(err, [w, b, v, c])

# compile a fast training function
train = theano.function([sx, sy], err,
    updates={
        w: w - lr * gw,
        b: b - lr * gb,
        v: v - lr * gv,
        c: c - lr * gc})

# now do the computations
batchsize = 100
for i in xrange(1000):
    x_i = x[i * batchsize: (i + 1) * batchsize]
    y_i = y[i * batchsize: (i + 1) * batchsize]
    err_i = train(x_i, y_i)









Theano in one slide



		High-level domain-specific language tailored to numeric computation


		Compiles most common expressions to C for CPU and GPU.


		Limited expressivity means lots of opportunities for expression-level optimizations







		No function call -> global optimization


		Strongly typed -> compiles to machine instructions


		Array oriented -> parallelizable across cores


		Support for looping and branching in expressions










		Expression substitution optimizations automatically draw
on many backend technologies for best performance.







		FFTW, MKL, ATLAS, SciPy, Cython, CUDA


		Slower fallbacks always available










		Automatic differentiation








Project status



		Mature: theano has been developed and used since January 2008 (3.5 yrs old)


		Driven over 40 research papers in the last few years


		Good user documentation


		Active mailing list with participants from outside our lab


		Core technology for a funded Silicon-Valley startup


		Many contributors (some from outside our lab)


		Used to teach IFT6266 for two years


		Used for research at Google and Yahoo.


		Unofficial RPMs for Mandriva


		Downloads (January 2011 -  June 8 2011):







		Pypi 780


		MLOSS: 483


		Assembla (bleeding edge repository): unknown












Why scripting for GPUs?


They Complement each other:



		GPUs are everything that scripting/high level languages are not







		Highly parallel


		Very architecture-sensitive


		Built for maximum FP/memory throughput


		So hard to program that meta-programming is easier.










		CPU: largely restricted to control







		Optimized for sequential code and low latency (rather than high throughput)


		Tasks (1000/sec)


		Scripting fast enough









Best of both: scripted CPU invokes JIT-compiled kernels on GPU.





How Fast are GPUs?



		Theory







		Intel Core i7 980 XE (107Gf/s float64) 6 cores


		NVIDIA C2050 (515 Gf/s float64, 1Tf/s float32) 480 cores


		NVIDIA GTX580 (1.5Tf/s float32) 512 cores


		GPUs are faster, cheaper, more power-efficient










		Practice (our experience)







		Depends on algorithm and implementation!


		Reported speed improvements over CPU in lit. vary widely (.01x to 1000x)


		Matrix-matrix multiply speedup: usually about 10-20x.


		Convolution speedup: usually about 15x.


		Elemwise speedup: slower or up to 100x (depending on operation and layout)


		Sum: can be faster or slower depending on layout.










		Benchmarking is delicate work...







		How to control quality of implementation?







		How much time was spent optimizing CPU vs GPU code?










		Theano goes up to 100x faster on GPU because it uses only one CPU core


		Theano can be linked with multi-core capable BLAS (GEMM and GEMV)










		If you see speedup > 100x, the benchmark is probably not fair.








Software for Directly Programming a GPU


Theano is a meta-programmer, doesn’t really count.



		CUDA: C extension by NVIDIA







		Vendor-specific


		Numeric libraries (BLAS, RNG, FFT) maturing.










		OpenCL: multi-vendor version of CUDA







		More general, standardized


		Fewer libraries, less adoption.










		PyCUDA: python bindings to CUDA driver interface







		Python interface to CUDA


		Memory management of GPU objects


		Compilation of code for the low-level driver


		Makes it easy to do GPU meta-programming from within Python










		PyOpenCL: PyCUDA for PyOpenCL
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  ‘’‘C code is actually generated this way. Could be refreshed as developer documentation.  Olivier to review.  20080904.’‘’


Here is a proposal on the interface to generate C code:



What will be passed to C


For each ResultBase, the C code gets a variable called storage_<name> which contains a PyObject* pointing to a 1-element list (a sort of cell). That is the “channel” via which C and Python can communicate data. Of course, the C code will not manipulate that directly. At every execution of the C function, the PyObject* inside the storage is extracted and given the name py_<name> (its reference count is handled automatically).





Extracting the data for use with C


In ResultBase, we have several methods to generate C code for particular purposes. They should return templated strings of C code (see below) but should not actually fill the template. The caller will fill it.



		List of template variables you can use:


		
		‘’‘%(name)s:’‘’ Will be filled in by a mangled name representing this ResultBase.


		‘’‘%(fail)s:’‘’ This can be inserted in the code to make the current function fail. It will proceed to cleanup everything that needs to be cleaned up. This cannot be used in any cleanup routine (and hence it is forbidden for a cleanup routine to fail!) If a code block uses %(fail)s, its corresponding cleanup block will be called first, so make sure that the cleanup can be done properly at any point where you use %(fail)s, even if you didn’t allocate or INCREF everything yet.











List of methods in ResultBase:


‘’‘c_declare:’‘’ This method returns code that declares one or more variables ‘’without’’ initializing them. These are the variables that all C code using this ResultBase will use to manipulate the data. The code should ‘’only’’ declare variables and typedefs (no #defines, but a future extension might address this). Example: if we have a ResultBase representing a double, c_declare may simply return “double %(name)s;”. ‘’All’’ variables declared should contain the %(name)s template, but they may prefix or suffix it.


‘’‘c_init:’‘’ This method returns code that initializes (zeros/sets to NULL, typically) the variables declared in c_declare.


‘’‘c_extract:’‘’ This method should manipulate py_<name> to set the values of the variables declared by c_declare. For example, if we have a ResultBase representing a double, c_extract might return “%(name)s = PyFloat_AsDouble(py_%(name)s);” (plus error checking!). If something is wrong with the data provided from Python, c_extract should set an informative error message and insert %(fail)s.


‘’‘c_sync:’‘’ This method should adjust the py_<name> variable using the values of the variables declared by c_declare. For example, if we have a ResultBase representing a double, c_sync might return “Py_XDECREF(py_%(name)s); py_%(name)s = PyFloat_FromDouble(%(name)s);”. The result will then be made accessible from Python. c_sync is not allowed to fail, though it is not really cleanup code.


‘’‘c_cleanup:’‘’ This method should clean up all the variables declared by c_declare.



Warning


This page describes usage of c_init and c_extract as of version 0.4.0 (and
previous versions). This will change in the future, to allow c_code to
use preallocated memory buffers of the outputs.





		Important notes:


		
		‘’Either’’ c_init or c_extract will be called. The former for temporary variables and outputs, the latter for inputs. If the former is used, py_<name> will be set to Py_None regardless of what is in storage_<name>.


		c_sync will only be called on the outputs, not on inputs or temporaries.


		c_cleanup will ‘’always’’ be called. If c_sync decides to relay some data to Python (thus ousting it from the op’s scope), it should NULL any pointers that c_cleanup is not allowed to free.














Manipulating the data from C


The Op class has in turn several methods that generate C code. As for ResultBase, they should return templated strings of C code (see below) but should not actually fill the template. The caller will fill it.



		List of template variables you can use:


		
		‘’‘%(<variable_name>)s:’‘’ See c_var_names. These will be substituted for mangled names.


		‘’‘%(fail)s:’‘’ This can be inserted in the code to make the current function fail. It will proceed to cleanup everything that needs to be cleaned up. This cannot be used in any cleanup routine (and hence it is forbidden for a cleanup routine to fail!). If a code block uses %(fail)s, its corresponding cleanup block will be called first, so make sure that the cleanup can be done properly at any point where you use %(fail)s, even if you didn’t allocate or INCREF everything yet.











‘’‘c_var_names’‘’: This method should return two lists, one list of strings representing the input names and one list of strings representing the output names. The actual names might be mangled by the compiler. In the template strings returned by the next few methods, you can use the names defined here. For example, if op.c_var_names() returns [[‘x’, ‘y’], [‘z’]], then “%(x)s” in op’s templates will be the same as “%(name)s” in op.inputs[0]’s templates. This means that all the variables declared by the inputs and outputs can easily be used in the op’s templates.


‘’‘c_validate_update’‘’: This method should return code that ensures that the inputs are valid for processing by this Op (checking shapes, bounds, etc.). If anything is invalid, it should set an informative error message and use %(fail)s. Then, it should prepare the outputs: for example, if the output is a tensor, allocate a tensor, resize it appropriately and place it in the appropriate variable (see c_var_names).


‘’‘c_validate_update_cleanup’‘’: This method should clean up any temporary storage used by c_validate_update. It is not forbidden to do it in c_validate_update itself, but this can come in handy.


‘’‘c_code’‘’: This is the meat of the Op that actually calculates the function. If an error occurs in the process, it may use %(fail)s. It should work in place on the variables declared by its inputs and outputs and rely on their c_sync routines to relay the results to Python.


‘’‘c_code_cleanup’‘’: This cleans up any temporary structures allocated by c_code.


‘’‘c_is_simple (field)’‘’: Class field. Defaults to False. It is basically a compiler hint that this class represents a builtin C type or a small struct, so we can optimize its access.



		Important notes:


		
		There might be provisions in the future to skip the validate_update step if the Op can guarantee that the inputs are valid and the outputs are set up properly.


		It is not forbidden to just put the validate_update code in c_code. Some situations might require it, but it helps organization to segregate them.














Failure


Besides cleanup code, all code has access to the %(fail)s template. For three code blocks, the generated C code will pretty much look like this:


int failure = 0;
{
  <code1>
  {
    <code2>
    {
      <code3>
    label3:
      <cleanup3>
    }
  label2:
    <cleanup2>
  }
label1:
  <cleanup1>
}
return failure;






And %(fail)s in the nth code block will take the value “{failure = n; goto label<n>;}”. This means only the blocks executed up to the failure point are cleaned up and the return value indicates which block failed, which is handy for debugging.


When compiling an Op, we want to sync the outputs so we can get the results from Python. In case of failure, we will not necessarily want to sync. Because of that, typical code will look like this:


int failure = 0;
<declare input>
<declare output>
{
  <extract input>
  {
    <extract output>
    {
      <perform>
    label3:
      <clean up perform>
    }
  label2:
    if (!failure)
      <sync output>
    <clean up output>
  }
label1:
  <clean up input>
}
return failure;






Furthermore, is not necessary to extract the output because we mean to overwrite it anyway. In that case, <extract output> will be a no-op, but of course we may still need to clean up or sync what <perform> will put in the declared outputs.





Example ResultBase


The following ResultBase represents a double (we only care about the C part).


class Double(ResultBase):
  <snip>
  def c_declare(self):
    return "double %(name)s;"
  def c_init(self):
    return "%(name)s = 0.0;"
  def c_extract(self):
    return "%(name)s = PyFloat_AsDouble(py_%(name)s);"
  def c_cleanup(self):
    return "" # nothing to do
  def c_sync(self):
    return "Py_XDECREF(py_%(name)s); py_%(name)s = PyFloat_FromDouble(%(name)s);"









Example Op


The following ResultBase represents addition of two nonnegative doubles (we only care about the C part).


class Add(Op):
  <snip>
  def c_var_names(self):
    return "[['x', 'y'], ['z']]"
  def c_validate_update(self):
    return "if (%(x)s < 0 || %(y)s < 0) %(fail)s" # fail if x or y is negative
  def c_validate_update_cleanup(self):
    return "" # nothing to do
  def c_code(self):
    return "%(z)s = %(x)s + %(y)s;"
  def c_code_cleanup(self):
    return "" # nothing to do









Generating a C function


For the example Op, the generated C function will typically look like this:


void add(PyObject* storage_x, PyObject* storage_y, PyObject* storage_z) {
  PyObject* py_x = PyList_GET_ITEM(storage_x, 0); Py_XINCREF(py_x); // automatic
  PyObject* py_y = PyList_GET_ITEM(storage_y, 0); Py_XINCREF(py_y); // automatic
  PyObject* py_z = Py_None; // we don't care what's currently in storage_z

  failure = 0
  double x; // x.c_declare
  double y; // y.c_declare
  double z; // z.c_declare
  {
    x = PyFloat_AsDouble(py_x); // x.c_extract
    {
      y = PyFloat_AsDouble(py_y); // y.c_extract
      {
        # we don't need to use z.c_extract
        {
          if (x < 0 || y < 0) { // add.validate_update
            // This is automatically inserted in place of %(fail)s
            failure = 4;
            goto label_add_validate_update_cleanup;
          }
          {
            z = x + y; // add.c_code
          label_add_code_cleanup:
          }
        label_add_validate_update_cleanup:
        }
      label_z_sync_or_cleanup:
        if (!failure) {
          Py_XDECREF(py_z); // z.c_sync
          py_z = PyFloat_FromDouble(z); // z.c_sync, the result is now available from Python!
          PyList_SET_ITEM(storage_z, 0, py_z); // always done after _.c_sync
        }
        Py_XDECREF(py_z); // always done after _.c_cleanup
      }
    label_y_cleanup:
      Py_XDECREF(py_y); // always done after _.c_cleanup
    }
  label_x_cleanup:
    Py_XDECREF(py_x); // always done after _.c_cleanup
  }
  return failure;
}









Generating a C struct


To accelerate processing a tad, a struct can be generated instead of a function. The struct will keep pointers to the storage where to fetch inputs and store outputs, but it will also store fields declared by outputs and temporaries’ c_declare methods.


Here is a sketch of the struct equivalent of the previous function:


struct add {
  PyObject* storage_x;
  PyObject* storage_y;
  PyObject* storage_z;
  double z; // z.c_declare

  void init(PyObject* storage_x, PyObject* storage_y, PyObject* storage_z) {
    <set the struct members of the same names>
    <init the struct members corresponding to z>
  }

  void cleanup(void) {
    <cleanup z>
  }

  void run(void) {
    <same code as before minus z's cleanup>
  }

  add() { this->init(); }
  ~add() { this->cleanup(); }
};







		Advantages of using a struct:


		
		Can be run several times even if we provide the storage only once.


		Output variables or temporary variables can reuse what they allocated the last time. This is not particularly useful with doubles (in fact it might be detrimental), but if z was a large tensor it might be interesting to recycle the memory over thousands of runs of the Op.











No struct members will be made if a result’s c_is_simple field is True. They will be allocated on the stack instead.
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Sparse matrices



scipy.sparse


Note that you want SciPy >= 0.7.2



Warning


In SciPy 0.6, scipy.csc_matrix.dot has a bug with singleton
dimensions. There may be more bugs. It also has inconsistent
implementation of sparse matrices.


We do not test against SciPy versions below 0.7.2.





		We describe the details of the compressed sparse matrix types.


		
		scipy.sparse.csc_matrix


		should be used if the columns are sparse.


		scipy.sparse.csr_matrix


		should be used if the rows are sparse.


		scipy.sparse.lil_matrix


		is faster if we are modifying the array. After initial inserts,
we can then convert to the appropriate sparse matrix format.








		The following types also exist:


		
		dok_matrix


		Dictionary of Keys format. From their doc: This is an efficient structure for constructing sparse matrices incrementally.


		coo_matrix


		Coordinate format. From their lil doc: consider using the COO format when constructing large matrices.








		There seems to be a new format planned for scipy 0.7.x:


		
		bsr_matrix


		Block Compressed Row (BSR). From their doc: The Block Compressed Row (BSR) format is very similar to the Compressed Sparse Row (CSR) format. BSR is appropriate for sparse matrices with dense sub matrices like the last example below. Block matrices often arise in vector-valued finite element discretizations. In such cases, BSR is considerably more efficient than CSR and CSC for many sparse arithmetic operations.


		dia_matrix


		Sparse matrix with DIAgonal storage











There are four member variables that comprise a compressed matrix sp (for at least csc, csr and bsr):




		sp.shape


		gives the shape of the matrix.


		sp.data


		gives the values of the non-zero entries. For CSC, these should
be in order from (I think, not sure) reading down in columns,
starting at the leftmost column until we reach the rightmost
column.


		sp.indices


		gives the location of the non-zero entry. For CSC, this is the
row location.


		sp.indptr


		gives the other location of the non-zero entry. For CSC, there are
as many values of indptr as there are columns + 1 in the matrix.
sp.indptr[k] = x and indptr[k+1] = y means that column
k contains sp.data[x:y], i.e. the xth through the y-1th non-zero values.









See the example below for details.


>>> import scipy.sparse
>>> sp = scipy.sparse.csc_matrix((5, 10))
>>> sp[4, 0] = 20
/u/lisa/local/byhost/test_maggie46.iro.umontreal.ca/lib64/python2.5/site-packages/scipy/sparse/compressed.py:494: SparseEfficiencyWarning: changing the sparsity structure of a csc_matrix is expensive. lil_matrix is more efficient.
 SparseEfficiencyWarning)
>>> sp[0, 0] = 10
>>> sp[2, 3] = 30
>>> sp.todense()
matrix([[ 10.,   0.,   0.,   0.,   0.,   0.,   0.,   0.,   0.,   0.],
        [  0.,   0.,   0.,   0.,   0.,   0.,   0.,   0.,   0.,   0.],
        [  0.,   0.,   0.,  30.,   0.,   0.,   0.,   0.,   0.,   0.],
        [  0.,   0.,   0.,   0.,   0.,   0.,   0.,   0.,   0.,   0.],
        [ 20.,   0.,   0.,   0.,   0.,   0.,   0.,   0.,   0.,   0.]])
>>> print sp
  (0, 0)        10.0
  (4, 0)        20.0
  (2, 3)        30.0
>>> sp.shape
(5, 10)
>>> sp.data
array([ 10.,  20.,  30.])
>>> sp.indices
array([0, 4, 2], dtype=int32)
>>> sp.indptr
array([0, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3], dtype=int32)






Several things should be learned from the above example:



		We actually use the wrong sparse matrix type. In fact, it is the
rows that are sparse, not the columns. So, it would have been
better to use sp = scipy.sparse.csr_matrix((5, 10)).


		We should have actually created the matrix as a lil_matrix,
which is more efficient for inserts. Afterwards, we should convert
to the appropriate compressed format.


		sp.indptr[0] = 0 and sp.indptr[1] = 2, which means that
column 0 contains sp.data[0:2], i.e. the first two non-zero values.


		sp.indptr[3] = 2 and sp.indptr[4] = 3, which means that column
3 contains sp.data[2:3], i.e. the third non-zero value.





TODO: Rewrite this documentation to do things in a smarter way.





Speed



		For faster sparse code:


		
		Construction: lil_format is fast for many inserts.


		Operators: “Since conversions to and from the COO format are
quite fast, you can use this approach to efficiently implement lots
computations on sparse matrices.” (Nathan Bell on scipy mailing list)














Misc


The sparse equivalent of dmatrix is csc_matrix and csr_matrix.





Dot vs. StructuredDot


Often when you use a sparse matrix it is because there is a meaning to the
structure of non-zeros. The gradient on terms outside that structure
has no meaning, so it is computationally efficient not to compute them.


StructuredDot is when you want the gradient to have zeroes corresponding to
the sparse entries in the matrix.


TrueDot and Structured dot have different gradients
but their perform functions should be the same.


The gradient of TrueDot can have non-zeros where the sparse matrix had zeros.
The gradient of StructuredDot can’t.


Suppose you have dot(x,w) where x and w are square matrices.
If w is dense, like randn((5,5)) and x is of full rank (though
potentially sparse, like a diagonal matrix of 1s) then the output will
be dense too. (But i guess the density of the output is a red herring.)
What’s important is the density of the gradient on the output.
If the gradient on the output is dense, and w is dense (as we said it was)
then the True gradient on x will be dense.
If our dot is a TrueDot, then it will say that the gradient on x is dense.
If our dot is a StructuredDot, then it will say the gradient on x is only
defined on the diagonal and ignore the gradients on the off-diagonal.
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Compilation and Linking



Linker


WRITEME
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Broadcasting


The following may go either in:
a) numpy refresher.
b) more details of broadcasting in the types section.


=== broadcastable ===


The {{{broadcastable}}} field of a {{{Tensor}}} must be a tuple of boolean values. Each value corresponds to a dimension of the {{{Tensor}}} and specifies whether the {{{Tensor}}} can be “broadcasted” along that dimension.



		A value of {{{True}}} means two things:


		
		The size of the corresponding dimension will necessarily be 1.


		If needed, the {{{Tensor}}} can be ‘’broadcasted’’ or ‘’replicated’’ along the corresponding dimension to emulate a larger {{{Tensor}}}.











A value of {{{False}}} means that the corresponding dimension can take any nonnegative value and that the {{{Tensor}}} cannot be replicated along it (regardless of whether it is 1 or not).


Example: to define a ‘’row’’ type, set broadcastable to {{{(True, False)}}}: this means the shape must be like {{{(1, n)}}}. If you add a row of shape {{{(1, n)}}} to a matrix of shape {{{(m, n)}}}, the row will be “broadcasted” or “replicated” {{{m}}} times along the first dimension, producing a virtual matrix of the correct size {{{(m, n)}}}. Therefore, adding a row to a matrix will add the row to each row of the matrix. If the value of {{{broadcastable}}} for the first dimension of the row was {{{False}}}, the operation would instead raise an exception complaining that the dimensions are not the same.


Similarly, the broadcastable pattern for a column is {{{(False, True)}}}: this means the shape must be like {{{(m, 1)}}}, therefore adding a column to a matrix will add that column to each column of the matrix. Several Ops, such as {{{DimShuffle}}}, can add or remove broadcastable dimensions.


The length of {{{broadcastable}}} is the number of dimensions of the {{{Tensor}}}.
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Elemwise compiler


‘’‘Stale specification page.  Upgrade this to provide useful developer doc. 2008.09.04’‘’
== Definitions ==


The elementwise compiler takes inputs {{{(in0, in1, in2, ...)}}}, outputs {{{(out0, out1, out2, ...)}}}, broadcast modes {{{(mod0, mod1, mod2, ...)}}} where each mode corresponds to an output as well as {{{order}}} which determines if we broadcast/accumulate over the first or last dimensions (the looping order, basically, but some operations are only valid for one particular order!).


The broadcast mode serves to calculate the rank of the corresponding output and how to map each input element to an output element:




		{{{broadcast}}}
* output.rank = max(input.rank)
* the inputs of lesser rank are broadcasted over missing dimensions
* if {{{order == f}}} ([3, 5], [5]) => [3, 5] or ([7, 8, 9], [8, 9]) => [7, 8, 9]
* if {{{order == c}}} ([3, 5], [3]) => [3, 5] or ([7, 8, 9], [7, 8]) => [7, 8, 9]





		{{{(accumulate, Accumulator)}}}
* output.rank = min(input.rank)
* for the inputs of greater rank, we use Accumulator (sum, product, etc.) to accumulate over the first dimensions




		e.g. {{{if Accumulator == sum, order == c, x.rank == 2, y.rank == 1 and z = f(x, y) then z[i] = f(sum_j(x[i, j]), y[i])}}}










		if {{{order == f}}} ([3, 5], [5]) => [5] or ([7, 8, 9], [8, 9]) => [8, 9]


		if {{{order == c}}} ([3, 5], [3]) => [3] or ([7, 8, 9], [7, 8]) => [7, 8]















{{{order == c}}} is equivalent to transposing the outputs of an {{{order == f}}} operation on transposed inputs.



		This does not cover all cases of broadcasting, but I believe they cover enough. Other cases of broadcasting can be emulated with proper transposition and/or slicing.


		
		Could you give some examples of what kinds of broadcasting are and are not covered by your proposed implementation?







		For rank <= 2, I think only operations of the form {{{add(ones(3,1), ones(1,3)))}}} are missing. I actually didn’t think of that one before now.


		In general, it only handles f(shape(head, ...), shape(head, ...), ...) and f(shape(..., tail), shape(..., tail), ...)


		Maybe I could add a general case later... the thing is that I think the ones I am considering here are easier to streamline.















Point of clarification: the order discussed here corresponds to a set of broadcasting rules, and is independent from the storage order.  The ‘f’ order corresponds to numpy’s broadcasting rules, while the ‘c’ order is something new and different (TODO VERIFY!)


Question: does it make sense to apply the order to the loop, or is this broadcast order something which will be local to each input argument.  What happens when the elemwise compiler deals with more complex subgraphs with multiple inputs and outputs?


== The loop ==


Here is the loop for {{{order == c}}}. Check for errors!


<initialize iterators>

i1 = -1
while (++i1 < dim1) {
  i2 = -1
  rank_N-1_accumulator = init
  while (++i2 < dim2) {
    ...
    iN = -1
    while (++iN < dimN) {
      <accumulate rank N input>
      <SET rank N output using broadcasted inputs>
      <NEXT rank N iterator>
    }
    ...
  }
  <SET rank 1 output using accumulated inputs>
  <NEXT rank 1 iterator>
}






When {{{order == f}}}, the iterators ‘’ideally’’ (but not necessarily) iterate in FORTRAN order, i.e. the while loops are on {{{dimN..dim1}}} instead of {{{dim1..dimN}}}.


{{{order}}} does __not__ represent the {{{C/F_CONTIGUOUS}}} flags of the inputs or outputs. Depending on combinations of those parameters, different loops will be used. If {{{order == f and C_CONTIGUOUS(array)}}}, for example, the loop will be on {{{dim1..dimN}}} and the matrices of lesser rank will need to be looped over several times.


An Optimizer should look at the operations in the graph and figure out whether to allocate C_CONTIGUOUS (ideal for {{{order == c}}}) or F_CONTIGUOUS (ideal for {{{order == f}}}) arrays.


== Gradient ==



		The input ranks become the output ranks and gradients of the same rank as the outputs are added to the input list. If an output was given mode {{{broadcast}}}, then all inputs used to calculate it had to be broadcasted to that shape, so we must sum over the broadcasted dimensions on the gradient. The mode that we give to those inputs is therefore {{{(accumulate, sum)}}}. Inversely, if an output was given mode {{{(accumulate, sum)}}}, then all inputs used to calculate it had to be summed over those dimensions. Therefore, we give them mode {{{broadcast}}} in grad. Other accumulators than sum might prove more difficult. For example, the ith gradient for product is grad*product/x_i. Not sure how to handle that automatically.


		
		I don’t exactly follow this paragraph, but I think I catch the general idea and it seems to me like it will work very well.







		In a nutshell for {{{broadcast}}} I calculate the gradient as normal assuming the shape is broadcasted and then I sum over what I had to broadcast.










		Could you explain why the accumulator gradient (e.g. product) can be trickier?







		I thought about it and I figured that the general case is {{{g_accum[N-i+1], g_m[i] = grad_fn(accum[i-1], m[i], g_accum[N-i])}}} where {{{g_accum}}} is the accumulated gradient wrt the accumulator {{{accum}}}. It can be short-circuited in sum and product’s case: for sum, grad_fn is the identity on its last argument so {{{g_m[i] == g_accum[i] == g_accum[0] == g_z for all i}}}. In product’s case, {{{accum[i-1] == product(m[1:i-1]) and g_accum[N-i] == g_z * product(m[i+1:N])}}}, multiply them together and you obtain {{{g_z * product(m)/m[i]}}} where obviously we only need to compute {{{product(m)}}} once. It’s worth handling those two special cases, for the general case I don’t know.
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Random Numbers


‘’’ This has been implemented (#182). 20090327.’‘’


= Random Numbers =


== Requirements ==


Theano functions sometimes need random numbers.
Random operations are not as simple as other operations such as ones_like, or pow(), because the output must be different when we call the same function repeatedly.  CompileFunction’s new default-valued, updatable input variables make this possible.  At the same time we need random streams to be repeatable, and easy to work with.  So the basic requirements of our random number mechanism are:



1. Internal random number generators must be used in a clear manner, and be accessible to the caller after a function has been compiled.
1. A random-number-producing Op (from now on: {{{RandomOp}}}) should generally produce exactly the same stream of random numbers regardless of any other {{{RandomOp}}} instances in its own graph, and any other times the graph was compiled.
1. A {{{RandomOp}}}’s stream should be isolated from other {{{RandomOp}}} instances in a compiled graph, so that it is possible to adjust any one {{{RandomOp}}} independently from the others.
1. It should be easy to put the {{{RandomOp}}}s in a graph into a state from which their outputs are all independent.
1. It should be easy to save the current state of the {{{RandomOp}}}s in a graph.
1. It should be easy to re-instate a previous state of the {{{RandomOp}}}s in a graph.



== Basic Technical Spec ==


One option would be to skirt the issue by requiring users to pass all the random numbers we might need as input.
However, it is not always simple to know how many random numbers will be required because the shape of a random matrix might be computed within the graph.
The solution proposed here is to pass one or more random number generators as input to {{{theano.function}}}.


Sharing a random number generator between different {{{RandomOp}}} instances makes it difficult to producing the same stream regardless of other ops in graph, and to keep {{{RandomOps}}} isolated.
Therefore, each {{{RandomOp}}} instance in a graph will have its very own random number generator.
That random number generator is an input to the function.
In typical usage, we will use the new features of function inputs ({{{value}}}, {{{update}}}) to pass and update the rng for each {{{RandomOp}}}.
By passing RNGs as inputs, it is possible to use the normal methods of accessing function inputs to access each {{{RandomOp}}}’s rng.
In this approach it there is no pre-existing mechanism to work with the combined random number state of an entire graph.
So the proposal is to provide the missing functionality (the last three requirements) via auxiliary functions: {{{seed, getstate, setstate}}}.


== Syntax ==


#!python
# create a random generator, providing a default seed to condition how RandomOp instances are produced.
r = MetaRandom(metaseed=872364)

# create a different random generator
rr = MetaRandom(metaseed=99)

# create an Op to produce a stream of random numbers.
# This generates random numbers uniformly between 0.0 and 1.0 excluded
# u will remember that it was made from r.
u = r.uniform(shape=(3,4,5), low=0.0, high=1.0)

# create a second Op for more random numbers
# v will remember that it was made from r.
v = r.uniform(shape=(8,), low=-1.0, high=0.0)

# create a third Op with a different underlying random state
# w will remember that it was made from rr.
w = rr.uniform(shape=(), low=-10., high=10.)

# compile a function to draw random numbers
# note: un-named state inputs will be added automatically.
# note: it is not necessary to draw samples for u, even though
#       u was created by r before v.
fn_v = compile.function([], [v])

# this prints some representation of v's rng in fn_v.
# The .rng property works for Result instances produced by MetaRandom.
print fn_v.state[v.rng]

# compile a function to draw each of u, v, w
# note: un-named state inputs will be added automatically
# note: This function (especially its internal state) is independent from fn_v.
fn_uvw = compile.function([], [u,v,w])

# N.B. The random number streams of fn_v and fn_uvw are independent.
assert fn_v.state[v.rng] != fn_uvw.state[v.rng]

fn_v()  # returns random numbers A (according to metaseed 872364)
fn_v()  # returns different random numbers B

# note that v's stream here is identical to the one in fn_v()
fn_uvw() # returns random numbers C, A, E

#explicitly re-seed v's random stream in fn_v
r.seed(fn_v, 872364)
fn_v()    # returns random numbers A (as above)
fn_v()    # returns random numbers B (as above)

#re-seed w's random stream in fn_uvw, but not u's or v's
rr.seed(fn_uvw, 99)
fn_uvw() # returns random numbers D, B, E






== {{{MetaRandom}}} ==


The {{{MetaRandom}}} class is the proposed interface for getting {{{RandomOp}}} instances.
There are some syntactic similarities in the way {{{MetaRandom}}} is used to construct graphs, and the way {{{numpy.RandomState}}} appears in a corresponding procedural implementation.  But since theano is symbolic the meaning of {{{MetaRandom}}} is quite different.


As with {{{numpy.RandomState}}} though, a global instance of {{{MetaRandom}}} will be instantiated at import time for the scripter’s convenience.


A {{{MetaRandom}}} instance will remember every {{{Result}}} that it returns during its lifetime.
When calling functions like {{{seed, setstate}}}, this list is consulted so that only the streams associated with Results returned by {{{self}}} are modified.
The use of multiple {{{MetaRandom}}} objects in a single function is mostly for debugging (e.g., when you want to synchronize two sets of random number streams).


The typical case is that only one (global) {{{MetaRandom}}} object is used to produce all the random streams in a function, so seeding (once) will reset the entire function.


class MetaRandom(obj):
 def __init__(self, metaseed=<N>): ... # new functions will be initialized so that seed(fn, <N>) has no effect on output.

 def __contains__(self, Result): ...   # True if Result was returned by a call to self.<distribution>
 def results(self): ...                # Iterate over returned Result instances in creation order.

 def seed(self, fn, bits): ...         # See below.
 def getstate(self, fn): ...           # See below.
 def setstate(self, fn, state): ...    # See below.

 def uniform(...): ...                 # return a Result of an Apply of a RandomOp.
                                     # The return value is also stored internally for __contains__ and results().
 def normal(...): ...
 def bernoulli(...): ...
 ...






=== {{{MetaRandom.getstate}}} ===


   def getstate(self, fn): ...

''return''::
  list, set, dict, instance... something to store the random number generators associated with every one of {{{self}}}'s members in {{{fn}}}






=== {{{MetaRandom.setstate}}} ===


Re-install the random number generators in {{{rstates}}} to the {{{randomobj}}} members in {{{fn}}


  def setstate(self, fn, rstates): ....

''fn::
  a CompileFunction instance, generally with some Apply instances inside that are members of {{{self}}}.
''rstates''::
  a structure returned by a previous call to {{{getstate}}}
''return''::
  nothing






=== {{{MetaRandom.seed}}} ===


   def seed(self, fn, bits): ....

''fn::
  a CompileFunction instance, generally with some Apply instances inside that are members of {{{self}}}.
''bits''::
  Something to use as a seed. Typically an integer or list of integers.
''return''::
  None






Set the states of self’s members in fn in a deterministic way based on bits.
Each member of self should generate independent samples after this call.


Seed is like a dynamically-computed setstate.  If the user runs
.. code-block:: python



r.seed(fn, 99)
state_99 = r.getstate(fn)



then any time afterward both {{{r.setstate(fn, state_99)}}} and {{{r.seed(fn, 99)}}} will put {{{fn}}} into the same state.


= Potential Other syntax =


#!python
# create a random state
r = RandomState(name = 'r')

# create a different random state
rr = RandomState(name = 'rr')

# create an Op to produce a stream of random numbers.
# That stream is a function of r's seed.
# This generates random numbers uniformly between 0.0 and 1.0 excluded
u = r.uniform(shape=(3,4,5), 0.0, 1.0)

# create a second Op for more random numbers
# This stream is seeded using a different function of r's seed.
# u and v should be independent
v = r.uniform(shape=(8,), -1.0, 0.0)

# create a third Op with a different underlying random state
w = rr.uniform(shape=(), -10., 10.)

# compile a function to draw random numbers
# note: it is not necessary to draw samples for u.
# we provide the seed for the RandomState r in the inputs list as a "Type 4" input
fn_v = compile.function([(r, 872364)], [v])

# compile a function to draw each of u, v, w
# we provide the seeds for the RandomStates r and rr in the inputs list as "Type 4" inputs
# note: the random state for r here is seeded independently from the one in fn_v, which means
#       random number generation of fn_v and fn_uvw will not interfere. Since the seed is the
#       same, it means they will produce the same sequence of tensors for the output v.
fn_uvw = compile.function([(r, 872364), (rr, 99)], [u,v,w])


fn_v()  # returns random numbers A
fn_v()  # returns different random numbers B

# note that v's stream here is identical to the one in fn_v()
fn_uvw() # returns random numbers C, A, E

#re-seed v's random stream in fn
fn_v.r = 872364

### Is this state readable? What should we do here:
print fn_v.r

fn()    # returns random numbers A

### Is this state well-defined?
### Does there even exist a number such that fn_v.r = N would have no effect on the rng states?
print fn_v.r

fn()    # returns random numbers B

#re-seed w's random stream, but not u's or v's
fn_uvw.rr = 99
fn_uvw() # returns random numbers D, B, E
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Others software


Other software to look at and maybe recommend to users:



		
		[http://www.pytables.org/moin PyTables] - This is looking really


		promising for dataset storage and experiment logging... This might
actually be useful for large data sets.











		
		[http://matplotlib.sourceforge.net/ MatPlotLib] - visualization tools


		(plot curves interactively, like matlab’s figure window)











		
		[http://www.pythonware.com/products/pil/ PIL] - Python Image Library:


		write your matrices out in png! (Kinda a weird recommendation, I think)











		
		[http://www.logilab.org/857 pylint] - Syntax checker for python to


		help beautify your code. (We’d be hypocrites to recommend this :)











		
		[http://www.winpdb.org/ Winpdb] - A Platform Independent Python


		Debugger. (Except it doesn’t really help you debug Theano graphs)











		
		[http://wiki.python.org/moin/IntegratedDevelopmentEnvironments Python


		Integrated Development Environments] - for all your coding needs
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Performance



		Theano uses several tricks to obtain good performance:


		
		common sub-expression elimination


		[custom generated] C code for many operations


		pre-allocation of temporary storage


		loop fusion (which gcc normally can’t do)











On my neural net experiments for my course projects, I was getting around 10x
speed improvements over basic numpy by using theano.
[More specific speed tests would be nice.]


With a little work, Theano could also implement more sophisticated
optimizations:




		automatic ordering of matrix multiplications


		profile-based memory layout decisions (e.g. row-major vs. col-major)


		gcc intrinsics to use MMX, SSE2 parallelism for faster element-wise arithmetic


		conditional expressions
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Max Gotcha


Guillaume and I just found a bug in some experiment code that was
basically caused by confusing semantics of max().  The same sort of
thing applies to min.  This is an FYI email to help others on the list
avoid this mistake, which is (I think) easy to make.


Python’s max() function takes multiple arguments and returns the
largest one of them. (I won’t go into the details of how it deals with
corner cases.)


IN CONTRAST


numpy’s max() function takes multiple arguments and returns the
largest element[s] from the first argument.  The second argument is
used to identify the axis along which to evaluate the [python-style]
max.  The third argument is an array into which the result can be
written.


So for example:
.. code-block:: python


>>> max(3, 4)
4
>>> numpy.max(3, 4)
3
>>> a,b,c = [numpy.asarray(i) for i in [0,1,2]]
>>> numpy.max(a,b,c)
0
>>> c
array(0)






Be careful!


Theano defines a max function (called theano.tensor.max) that is
similar numpy’s max.


Theano also defines a function called theano.tensor.largest that is
closer to python’s, but not identical since it works elemwise for
tensors.  There is a corresponding ‘smallest’ function that is like
min()
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State example


In this example, we’ll look at a complete logistic regression model, with
training by gradient descent.


BUT, YOU GOTTA RUN THIS CODE AND MAKE SURE IT STILL WORKS NICELY, HEY?


def build_logistic_regression_model(n_in, n_out, l2_coef=30.0)
    # DECLARE SOME VARIABLES

    import tensor as T

    x = T.matrix()  #our points, one point per row
    y = T.matrix()  #store our labels as place codes (label 3 of 5 is vector [00100])

    w = T.matrix()  #the linear transform to apply to our input points
    b = T.vector()  #a vector of biases, which make our transform affine instead of linear

    stepsize = T.scalar('stepsize')  # a stepsize for gradient descent

    # REGRESSION MODEL AND COSTS TO MINIMIZE

    prediction = T.softmax(T.dot(x, w) + b)
    cross_entropy = T.sum(y * T.log(prediction), axis=1)
    cost = T.sum(cross_entropy) + l2_coef * T.sum(T.sum(w*w))

    # GET THE GRADIENTS NECESSARY TO FIT OUR PARAMETERS

    grad_w, grad_b = T.grad(cost, [w, b])

    #
    # GET THE GRADIENTS NECESSARY TO FIT OUR PARAMETERS

    update_fn = theano.function(
        inputs = [x, y, stepsize,
            In(w,
                name='w',
                value=numpy.zeros((n_in, n_out)),
                update=w - stepsize * grad_w,
                mutable=True,
                strict=True)
            In(b,
                name='b',
                value=numpy.zeros(n_out),
                update=b - lr * grad_b,
                mutable=True,
                strict=True)
        ],
        outputs = cost,
        mode = 'EXPENSIVE_OPTIMIZATIONS')

    apply_fn = theano.function(
        inputs = [x, In(w, value=update_fn.storage[w]), In(b, value=update_fn.storage[b])],
        outputs = [prediction])

    return update_fn, apply_fn

#USUALLY THIS WOULD BE IN A DIFFERENT FUNCTION/CLASS
#FIT SOME DUMMY DATA: 100 points with 10 attributes and 3 potential labels

up_fn, app_fn = build_logistic_regression_model(n_in=10, n_out=3, l2_coef=30.0)

x_data = numpy.random.randn(100, 10)
y_data = numpy.random.randn(100, 3)
y_data = theano._asarray(y_data == numpy.max(y_data, axis=1), dtype='int64')

print "Model Training ..."
for iteration in xrange(1000):
    print "  iter", iteration, "cost", update_fn(x_data, y_data, stepsize=0.0001)

print "Model Predictions"
print apply_fn(x_data)
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Tensor Op Tools


WRITEME - describe how to use Elemwise here
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Functional


Want to know about Theano’s function design
<http://groups.google.com/group/theano-dev/browse_thread/thread/fd4c6947d8a20510>?
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Advanced Topics (under construction)




		Feature


		Compilation and Linking
		Linker








		What will be passed to C


		Extracting the data for use with C


		Manipulating the data from C


		Failure


		Example ResultBase


		Example Op


		Generating a C function


		Generating a C struct


		function interface


		Debugging with a customized so-called StepMode
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  ‘’‘An open proposal.  This is still relevant. 20080904’‘’



New C code generation?



Issues



		There are several issues with the current way C code is generated:


		
		Ops cannot declare their own persistent variables.


		Reliance on weave, but most of weave’s features go unused.


		There could easily be conflicts between support code from different Ops/Results.
* It is currently impossible to specialize support code based on the self.


		Caching of the generated code for graphs is greatly suboptimal.














Structure


Currently, the general structure of the generated C code is approximately as follows:


<imports>
<weave type converters>
<op/result support code>

struct my_computation {
  <input/output storage>
  <persistent fields>
  init(<input/output storage>) { <initialize persistent fields> }
  cleanup { <clean up persistent fields> }
  run { <run the computation> }
};

<runner for the struct>
PyObject* instantiate(PyObject* args) {
  <weave stuff>
  <make up a CObject out of the runner and a my_computation instance>
  <weave stuff>
}
<python exports for instantiate>






The module produced via that method then has to be used as such:


obj = module.instantiate(error_storage, input_storage, output_storage, orphan_storage)
cutils.run_cthunk(obj)






We would like to get rid of weave dependencies, avoid name conflicts with the support code and have a nicer user interface for the produced module. The proposed new structure is as follows:


<imports>

struct op1 {
  <persistent variables>
  <support code>
  init() { <initialize persistent fields> }
  cleanup { <clean up persistent fields> }
  run(<inputs>) { <run the computation for op1> }
};

struct op2 { <same> };
...
struct opN { <ditto> };

struct driver {
  op1 o1; op2 o2; ... opN oN;
  <input storage>
  <output storage>
  init(<storage>) { <initialize ops, storage> }
  cleanup() { <free storage?> }
  run() {
    <extract inputs>
    o1.run(input1, input2);
    o2.run(o1.output1);
    ...
    oN.run(...);
    <sync outputs>
  }
}

PyObject* <name>(PyObject* inputs) {
  <init driver, input/output storage>
  <put inputs in input storage>
  driver.run()
  <free input storage>
  <return output storage>
}

PyObject* <name>_driver(PyObject* storage) {
  <init driver with storage>
  <return driver>
}

<export <name> and <name>_driver>







		Gains:


		
		support code can be put inside a struct and become private to the Op


		we can export several functions that can be used directly, eg z = module.add(1, 2)
* this won’t do filtering like Result.filter so the usefulness is limited by that


		the sequence of operations might be clearer to read


		we can use more descriptive names in each Op struct representing its input names (if we can find them using the inspect module) without worrying about name conflicts








		Losses:


		
		maybe gcc can’t optimize it as well?
* make functions static and inline as much as possible














Caching



		The current way of caching is from a hash of the generated code. That is inefficient because code has to be generated each time, which might be a costly process. Furthermore, usage of hashing in sets make it difficult to ensure a consistent ordering of Ops in graphs where several orderings are valid, so the generated C code is potentially different each time. Here is a proposal for a better way to compute the hash:


		
		Result_hash = Result version + Result desc


		Op_hash = Op version + Op desc + input/output hashes


		FunctionGraph_hash = FunctionGraph version + combination of the Op hashes and their traversal order wrt a consistent traversal method











The version could be set explicitly via a __version__ field or it could simply be equal to the file’s last modification date. We could also have a __nocache__ field indicating that code produced by the Op or Result cannot be cached.


It should also be easier to bypass the cache (eg an option to CLinker to regenerate the code).
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Interactive Debugger


‘’‘Seed of discussion for what an interactive debugging tool might look like. 2009.03.27.’‘’


== Interactive debugger ( #352 ) ==


The interactive debugger should allow the user to go step by step in a graph to debug it. It should allow setting breakpoints on arbitrary Ops or subgraphs. If we can group ops by the user’s function that defined them, we could have a logical grouping of the graph into subgraphs.


The debugger should save the inputs at each step so the user loses no info through inplace operations. Ideally, the debugger should be a normal python shell enriched with commands to control the flow and all the inputs should be made available so the user can use numpy interactively on them.



		Command wishlist


		
		py_perform (perform the current operation using the python implementation)


		c_perform (perform the current operation using the C implementation)


		perform (use the Linker’s preference)


		get_inputs (get the inputs of the current op)


		set_inputs (set the inputs of the current op)


		get_outputs (get the outputs of the current op)


		set_outputs (set the outputs of the current op (bypasses its perform))


		next (perform and go to the next breakpoint)


		breakpoint (set a breakpoint on the current Op or subgraph)


		step (perform and go to the next Op or subgraph)


		step_in (go to the first Op inside the current subgraph)


		step_out (exit the subgraph containing this Op)


		Of course, normal python shell functionality!


		The global context where the debugger was called (so the user can define his own helper functions, etc.)











A good, simple way to do it would be to have those commands as methods of a structure that would be returned by a DebugLinker. This would allow an interactive session like the following:


{{{
>>> a, b, c = Tensor(), Tensor(), Tensor()
>>> d = b * c
>>> e = a + d
>>> debug = DebugLinker(FunctionGraph([a, b, c], [e])).make_function()
>>> debug.set_breakpoint(d)
>>> debug.debug(10, 20, 30) # a, b, c = 10, 20, 30
Now at: Mul(b, c)
Context: d = b * c
>>> debug.get_inputs() # we are at the node d = b * c
[20, 30]
>>> debug.get_outputs()
[None]
>>> debug.py_perform()
>>> debug.get_outputs()
[600]
>>> debug.step()
Now at: Add(a, Mul)
Context: e = a + d
>>> debug.get_inputs()
[30, 600]
>>> debug.step()
Finished.
[630]
>>>
}}}
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function interface


WRITEME
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Sandbox, this documentation may or may not be out-of-date
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Hosting Theano


‘’‘Historical Interest.  This has been addressed for now.  20080904’‘’


There are several [http://en.wikipedia.org/wiki/Comparison_of_free_software_hosting_facilities project hosting services] online, but none is perfect for theano.



		Wishlist:


		
		version control (mercurial)


		bugtracker (TRAC, ideally)


		wiki


		release file hosting


		mailing list


		reliability of hosting service











Should we get a domain name? To my dismay, theano.org, theano.com and theano.net are all taken. The first two seem legit, but theano.net doesn’t look like it has anything on it and expires on May 29, so maybe there’s a chance we can snag it? -ob


We could also get [http://www.theano.io]. -jpt




On Fri, May 09, 2008 at 03:49:31PM -0400, Joseph Turian wrote:
> Another option for backup:
>
> Since we have access to LGCM, there is a single SQLite db file (AFAIK)
> that we can back up periodically.
> e.g. cron job to gzip and email it to us once a week.


There are instructions for how to backup a Trac site, i just haven’t gotten
around to it. Currently, the whole directory is rsynced to the lisa account,
which is close to ok, but not quite.


> Besides mailing list, is there anything else we need? Besides figuring
> out how to administer trac? :}


Writing scripts to update p-omega1/.ssh/authorized_keys2 automatically from
certain user accounts’ authorized_keys2 file.  I’ve written this script, but not
really tested it.


Hooking up mercurial to trac would be nice, so we can associate commits and
tickets.


lgcm’s uptime is usually about a week or two at max, so there’s the pain in the
ass of having to re-log in, start up a screen session, find the directories,
restart trac, restart hg serve.  We should be restarting hg serve for tlearn too
soon.


Even if I do set up the authorized_keys2 script to do the right thing, the users
on TRAC and the users on the system are totally independent, so adding a new
user is non-standard and only I can do it right now.



		My choices seem to be:


		
		document all these hoops and good ideas


		fix them so they are easier to use and document


		replace them with hosting service











All of these options take time, mental effort, and the support of our
development group (look the large number of messages today on the topic)... so
i’m trying to find the least of all evils.  The Right Thing doesn’t seem to have
appeared yet.
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Frequently Asked Questions



TypeError: object of type ‘TensorVariable’ has no len()


If you receive the following error, it is because the Python function __len__ cannot
be implemented on Theano variables:


TypeError: object of type 'TensorVariable' has no len()






Python requires that __len__ returns an integer, yet it cannot be done as Theano’s variables are symbolic. However, var.shape[0] can be used as a workaround.


This error message cannot be made more explicit because the relevant aspects of Python’s
internals cannot be modified.





Faster gcc optimization


You can enable faster gcc optimization with the cxxflags option.
This list of flags was suggested on the mailing list:


-O3 -ffast-math -ftree-loop-distribution -funroll-loops -ftracer






Use it at your own risk. Some people warned that the -ftree-loop-distribution optimization resulted in wrong results in the past.


In the past we said that if the compiledir was not shared by multiple
computers, you could add the -march=native flag. Now we recommend
to remove this flag as Theano does it automatically and safely,
even if the compiledir is shared by multiple computers with different
CPUs. In fact, Theano asks g++ what are the equivalent flags it uses, and re-uses
them directly.





Faster Theano Function Compilation


Theano function compilation can be time consuming. It can be sped up by setting
the flag mode=FAST_COMPILE which instructs Theano to skip most
optimizations and disables the generation of any c/cuda code. This is useful
for quickly testing a simple idea.


If c/cuda code is necessary, as when using a GPU, the flag
optimizer=fast_compile can be used instead. It instructs Theano to skip time
consuming optimizations but still generate c/cuda code. To get the most out of
this flag requires using a development version of Theano instead of the latest
release (0.6).


Similarly using the flag optimizer_excluding=inplace will speed up
compilation by preventing optimizations that replace operations with a version
that reuses memory where it will not negatively impact the integrity of the
operation. Such optimizations can be time consuming. However using this flag will
result in greater memory usage because space must be allocated for the results
which would be unnecessary otherwise. In short, using this flag will speed up
compilation but it will also use more memory because
optimizer_excluding=inplace excludes inplace optimizations resulting
in a trade off between speed of compilation and memory usage.


Theano flag reoptimize_unpickled_function controls if an unpickled theano function
should reoptimize its graph or not. Theano users can use the standard python pickle
tools to save a compiled theano function. When pickling, both graph before and
after the optimization are saved, including shared variables. When set to True,
the graph is reoptimized when being unpickled. Otherwise, skip the graph optimization
and use directly the optimized graph from the pickled file.





Faster Theano function


You can set the Theano flag allow_gc to False to get a speed-up by using
more memory. By default, Theano frees intermediate results when we don’t need
them anymore. Doing so prevents us from reusing this memory. So disabling the
garbage collection will keep all intermediate results’ memory space to allow to
reuse them during the next call to the same Theano function, if they are of the
correct shape. The shape could change if the shapes of the inputs change.



Unsafe optimization


Some Theano optimizations make the assumption that the user inputs are
valid. What this means is that if the user provides invalid values (like
incompatible shapes or indexing values that are out of bounds) and
the optimizations are applied, the user error will get lost. Most of the
time, the assumption is that the user inputs are valid. So it is good
to have the optimization being applied, but loosing the error is bad.
The newest optimization in Theano with such assumption will add an
assertion in the graph to keep the user error message. Computing
these assertions could take some time. If you are sure everything is valid
in your graph and want the fastest possible Theano, you can enable an
optimization that will remove those assertions with:
optimizer_including=local_remove_all_assert







Faster Small Theano function



Note


For Theano 0.6 and up.




For Theano functions that don’t do much work, like a regular logistic
regression, the overhead of checking the input can be significant. You
can disable it by setting f.trust_input to True.
Make sure the types of arguments you provide match those defined when
the function was compiled.


For example, replace the following


x = theano.tensor.scalar('x')
f = function([x], x + 1.)
f(10.)






with


x = theano.tensor.scalar('x')
f = function([x], x + 1.)
f.trust_input = True
f(numpy.array([10.], dtype=theano.config.floatX))






Also, for small Theano functions, you can remove more Python overhead by
making a Theano function that does not take any input. You can use shared
variables to achieve this. Then you can call it like this: f.fn() or
f.fn(n_calls=N) to speed it up. In the last case, only the last
function output (out of N calls) is returned.





Out of memory... but not really


Occasionally Theano may fail to allocate memory when there appears to be more
than enough reporting:



Error allocating X bytes of device memory (out of memory). Driver report Y
bytes free and Z total.



where X is far less than Y and Z (i.e. X << Y < Z).


This scenario arises when an operation requires allocation of a large contiguous
block of memory but no blocks of sufficient size are available.


GPUs do not have virtual memory and as such all allocations must be assigned to
a continuous memory region. CPUs do not have this limitation because or their
support for virtual memory. Multiple allocations on a GPU can result in memory
fragmentation which can makes it more difficult to find contiguous regions
of memory of sufficient size during subsequent memory allocations.


A known example is related to writing data to shared variables. When updating a
shared variable Theano will allocate new space if the size of the data does not
match the size of the space already assigned to the variable. This can lead to
memory fragmentation which means that a continugous block of memory of
sufficient capacity may not be available even if the free memory overall is
large enough.





Related Projects


We try to list in this wiki page [https://github.com/Theano/Theano/wiki/Related-projects] other Theano related projects.





“What are Theano’s Limitations?”


Theano offers a good amount of flexibility, but has some limitations too.
You must answer for yourself the following question: How can my algorithm be cleverly written
so as to make the most of what Theano can do?


Here is a list of some of the known limitations:



		While- or for-Loops within an expression graph are supported, but only via
the theano.scan() op (which puts restrictions on how the loop body can
interact with the rest of the graph).


		Neither goto nor recursion is supported or planned within expression graphs.








“float32 / int{32, 64} gives float64”


It should be noted that using float32 and int{32, 64} together
inside a function would provide float64 as output.


Since the GPU can’t compute this kind of output, it would be
preferable not to use those dtypes together.


To help you find where float64 are created, see the
warn_float64 Theano flag.
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Easy Installation of an optimized Theano on CentOS 6



Note


It is possible to have a faster installation of Theano than the one these
instructions will provide, but this will make the installation more
complicated and/or may require that you buy software. This is a simple set
of installation instructions that will leave you with a relatively
well-optimized version that uses only free software. With more work or by
investing money (i.e. buying a license to a proprietary BLAS
implementation), it is possible to gain further performance.





Note


If you are behind a proxy, you must do some extra configuration steps
before starting the installation. You must set the environment
variable http_proxy to the proxy address. Using bash this is
accomplished with the command
export http_proxy="http://user:pass@my.site:port/"
You can also provide the --proxy=[user:pass@]url:port parameter
to pip. The [user:pass@] portion is optional.





Note


We use pip for 2 reasons. First, it allows “import module;
module.test()” to work correctly. Second, the installation of NumPy
1.6 or 1.6.1 with easy_install raises an ImportError at the end of
the installation. To my knowledge we can ignore this error, but
this is not completely safe. easy_install with NumPy 1.5.1 does not
raise this error.





Installation steps




		sudo yum install python-devel python-nose python-setuptools gcc
gcc-gfortran gcc-c++ blas-devel lapack-devel atlas-devel


		sudo easy_install pip


		sudo pip install numpy==1.6.1


		sudo pip install scipy==0.10.1


		sudo pip install Theano












Test the newly installed packages




		NumPy (~30s): python -c "import numpy; numpy.test()"


		SciPy (~1m): python -c "import scipy; scipy.test()"


		Theano (~30m): python -c "import theano; theano.test()"












Speed test Theano/BLAS


It is recommended to test your Theano/BLAS integration. There are many versions
of BLAS that exist and there can be up to 10x speed difference between them.
Also, having Theano link directly against BLAS instead of using NumPy/SciPy as
an intermediate layer reduces the computational overhead. This is
important for BLAS calls to ger, gemv and small gemm operations
(automatically called when needed when you use dot()). To run the
Theano/BLAS speed test:


python /usr/lib/python2.*/site-packages/theano/misc/check_blas.py






This will print a table with different versions of BLAS/numbers of
threads on multiple CPUs and GPUs. It will also print some Theano/NumPy
configuration information. Then, it will print the running time of the same
benchmarks for your installation. Try to find a CPU similar to yours in
the table, and check that the single-threaded timings are roughly the same.





Updating Theano


If you followed these installation instructions, you can execute this command
to update only Theano:


sudo pip install --upgrade --no-deps theano






If you want to also update NumPy/SciPy, you can run this:


sudo pip install --upgrade theano









Bleeding edge


Do like in the section “Updating Theano”, but use
git+git://github.com/Theano/Theano.git instead of theano.
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Theano Citation Policy


If you use Theano for academic research, you are highly encouraged (though not
required) to cite the following two papers:



		F. Bastien, P. Lamblin, R. Pascanu, J. Bergstra, I. Goodfellow,
A. Bergeron, N. Bouchard, D. Warde-Farley and Y. Bengio.
“Theano: new features and speed improvements” [http://arxiv.org/pdf/1211.5590.pdf].
NIPS 2012 deep learning workshop. (BibTex [http://www.iro.umontreal.ca/~lisa/publications2/index.php/export/publication/551/bibtex])


		J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R.
Pascanu, G. Desjardins, J. Turian, D. Warde-Farley and Y.
Bengio. “Theano: A CPU and GPU Math Expression Compiler” [http://www.iro.umontreal.ca/~lisa/pointeurs/theano_scipy2010.pdf].
Proceedings of the Python for Scientific Computing Conference (SciPy)
2010. June 30 - July 3, Austin, TX (BibTeX [http://www.iro.umontreal.ca/~lisa/publications2/index.php/export/publication/461/bibtex])





Theano is primarily developed by academics, and so citations matter a lot to
us. As an added benefit, you increase Theano’s exposure and potential user
(and developer) base, which is to the benefit of all users of Theano. Thanks
in advance!


Previously, we only asked users of Theano to cite the original 2010 paper. However,
this policy did not give appropriate credit to the many members of our community
who have contributed to Theano in the meantime.


In the future, we intend to introduce new papers periodically (hopefully approximately
once per year) with a comprehensive author list. As soon as one of these papers is
prepared, we will only ask for users to cite the single most recent paper with the
most comprehensive author list.
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Installation of Theano on Windows


These instructions show step-by-step how to install Theano and
required dependencies on a 32- or 64-bit system using freely available
tools and compilers.



Installing Dependencies



Note


Command lines listed below are assumed to be run in a Windows prompt:
To open the prompt on Windows <= 7, click Start and type the cmd command to launch a command window.
In Windows 8, go to the Start screen and type command or cmd.




Theano currently works on Windows, however it requires compilers for
C/C++ (for Python 2.7 family this has to be Microsoft Visual Studio
2008 compiler), CUDA (CUDA v5.5 is required as it is the latest
version supporting Visual Studio 2008), and GCC (for non-CUDA C code
generated by Theano).



Visual Studio and CUDA


Unfortunately Microsoft recently stopped distributing Visual Studio
Express 2008 (the compilers required for Python 2.7 are provided,
though), therefore we require a temporary install of Visual Studio Express
2010 to be able to install CUDA (its installer requires a Visual
Studio installation to proceed). Afterwards, the Visual Studio 2010
can be safely removed. If someone knows how to install CUDA 5.5
without a proper Visual Studio installation, please let us know.


First we need to install Microsoft Visual Studio 2010 Express, which
is required to install CUDA. You can download it from
Visual Studio Express [http://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx].
Please install the Visual C version. We have downloaded the
all-in-one CD [http://go.microsoft.com/?linkid=9709969], extracted
it using 7zip [http://www.7-zip.org/], and ran the installer at
VCExpress\setup.exe.


If you want a 64bit Python installation, Visual Studio 2010 Express
doesn’t provide a 64bit compiler. To get one download and install the
Windows Software Development Kit version 7.1 [http://msdn.microsoft.com/en-us/windowsserver/bb980924.aspx].


Now you have a running (and free even for commercial use) installation
of MSVS2010 IDE with 32- and 64-bit compilers.


Once Visual Studio is installed, you can install CUDA. We recommend
CUDA 5.5, as it supports MSVC 2008. Download the CUDA installer from
the CUDA archive [https://developer.nvidia.com/cuda-toolkit-55-archive]. Be sure to
get 32-, or 64-bit version depending on your system configuration.


Once CUDA is installed you can remove VisualStudio Express 2010.


Finally, grab the Microsoft Visual C++ Compiler for Python 2.7 [http://www.microsoft.com/en-us/download/details.aspx?id=44266]. It
provides the now-obsolete compilers form Visual Studio 2008 that are
required for compatibility with Python 2.7. To install the package for
all users please:



		open an administrator’s console (got to start, then type cmd,
right-click on the command prompt icon and select run as
administrator)


		cd to your downloads directory and execute msiexec /i
VCForPython27.msi ALLUSERS=1





The package will be installed to C:\Program Files
(x86)\Common Files\Microsoft\Visual C++ for Python\9.0.


Finally download the stdint.h header from
here and save it as
C:\Program Files (x86)\Common Files\Microsoft\Visual C++ for
Python\9.0\VC\include\stdint.h.





GCC


Theano C code compiler currently requires a GCC installation. We have
used the build TDM GCC [http://tdm-gcc.tdragon.net/] which is
provided for both 32- and 64-bit platforms. A few caveats to watch for
during installation:



		Install to a directory without spaces (we have placed it in
C:\SciSoft\TDM-GCC-64)


		If you don’t want to clutter your system PATH un-check add to
path option.


		Enable OpenMP support by checking the option openmp support
option.








Scientific Python distribution


We highly recommend the Pierre Raybaut’s WinPython [http://winpython.sourceforge.net/] distribution - it is compiled
for both 32- and 64-bit systems, links against the fast MKL [https://software.intel.com/en-us/intel-mkl] BLAS
implementation, supports installation of auxiliary packages from
Chris Gohlke [http://www.lfd.uci.edu/~gohlke/pythonlibs/] and is
free.


WinPython also allows for a portable installation and doesn’t clutter
your main system PATH. We have installed it to
c:\SciSoft\WinPython-64bit-2.7.6.4.



Alternative in academia: EPD


If you are working in academia, an easy way to install most of the
dependencies is to install Enthought Python Distribution (EPD) [http://enthought.com/products/epd.php].
If you are affiliated with a university (as student or employee), you can
download the installation for free.
EPD installation includes, in particular, Python (and the development headers),
NumPy, SciPy, nose, sphinx, easy_install, pydot (but not `Graphviz`_, which is
necessary for it to work), g++, and the MKL
implementation of blas.


If you want to use the iPython shell, you should first try to import NumPy
in it:


C:\Users\user>ipython
[...]
In [1]: import numpy






If you see an error message telling you that DLL load failed, that is
probably due to a bug in the script launching ipython. If C:\SciSoft\Python27
is the directory where you installed EPD, edit
C:\SciSoft\Python27\Scripts\ipython.bat, there should be a line saying:


set path="C:\SciSoft\Python27";%path%






Remove the quotes around Python27, leading to:


set path=C:\SciSoft\Python27;%path%






Then, it should work in all new terminals.


pip is not included in EPD, but you can simply install it with:


easy_install pip









Alternative: Canopy


Canopy is another software that installs all Theano dependencies.
If you are affiliated with a university (as student or employee), you
can download the installation for free.



		Install Canopy x64, and update it to the latest version (Help /
Software updates...), as older Canopy versions have trouble installing
pip.


		Then install pip from Canopy Package Manager.


		In the Windows Prompt, type pip install theano.


		In Canopy Package Manager, search and install packages “mingw 4.5.2” and “libpython 1.2”


		(Needed only for Theano 0.6rc3 or earlier)
The “libpython 1.2” package installs files libpython27.a and libmsvcr90.a to
C:\Users\<USER>\AppData\Local\Enthought\Canopy\User\libs. Copy the two files to
C:\Users\<USER>\AppData\Local\Enthought\Canopy\App\appdata\canopy-1.0.0.1160.win-x86_64libs.


		(Needed only for Theano 0.6rc3 or earlier) Set the Theano flags
blas.ldflags=-LC:\Users\<USER>\AppData\Local\Enthought\Canopy\App\appdata\canopy-1.0.0.1160.win-x86_64\Scripts -lmk2_core -lmk2_intel_thread -lmk2_rt.








Alternative: AnacondaCE


ContinuumIO [http://continuum.io] is providing a free Python distribution for Windows (32-bit
and 64-bit), including all dependencies of Theano. If you are not
eligible for a download of EPD or Canopy (via a commercial, or free academic
licence), this is the easiest way to install
Theano’s dependencies. Simply download and execute the installer from
AnacondaCE download page [http://continuum.io/anacondace.html],
then download and execute the windows_anaconda.





Alternative: Python(x,y)


If you do not have a commercial licence of EPD, and are not eligible to a free
academic licence, and neither
Python nor MinGW is installed on your computer, you can install most
dependencies of Theano with Python(x,y) [http://www.pythonxy.com].
It is a single installation
file that contains additional packages like NumPy, SciPy, IPython, Matplotlib,
MinGW, Nose, etc.
Note however that there is no 64 bit version currently available.
You can keep the default install options, except that the installation
directory should not contain any blank space (in particular, do not install it
into C:\Program Files).





Alternative: manual installation


The following instructions provide steps for manual installation of all Theano
dependencies.
Note that it should be
possible to run Theano with Cygwin [http://www.cygwin.com/] instead of
MinGW, but this has not been tested yet.



		For 32 bit MinGW: from the MinGW files [http://sourceforge.net/projects/mingw/files/],
download the latest version of the Automated MinGW Installer
(mingw-get-inst) and install it (you should install all optional components,
except the Objective C and Ada compilers which are not needed).





		For 64 bit MinGW (note that manual installation for 64 bit is experimental):
download the latest version of MinGW-w64 from the project’s
releases page [http://sourceforge.net/projects/mingw-w64/files/], and extract
it for instance to C:\mingw64. Also download MSYS from
this page [http://sourceforge.net/projects/mingw-w64/files/External%20binary%20packages%20%28Win64%20hosted%29/MSYS%20%2832-bit%29/]
(although it is a 32-bit version of MSYS, this does not matter since it is only
a convenience tool). Extract MSYS into the same folder, so that, for instance, you
end up with C:\mingw64\msys. Run C:\mingw64\msys\msys.bat and in the MSYS
shell, type



sh /postinstall/pi.sh










and answer the few questions so that MSYS is properly linked to your MinGW install.





		It is recommended to set your MSYS home to be the same as your Windows home
directory. This will avoid inconsistent behavior between running Theano
in a Windows command prompt vs. a MSYS shell. One way to do this without
setting a global Windows HOME environment variable (which may affect
other programs) is to edit your msys.bat file (found e.g. under
C:\MinGW\msys\1.0 or C:\mingw64\msys) and add the following line at
the beginning (note that you may need to use e.g. Wordpad to edit this file,
since Notepad gets confused by Unix-style line breaks):



set HOME=%USERPROFILE%













		If you do not have them already, install the latest versions of
Python 2.x [http://www.python.org/download/windows] and
corresponding NumPy [http://sourceforge.net/projects/numpy/files/]
then SciPy [http://sourceforge.net/projects/scipy/files/]
packages (simply use the executable installers).
Note that there are currently no official 64 bit releases of NumPy and
SciPy, but you can find unofficial builds
here [http://www.lfd.uci.edu/~gohlke/pythonlibs/].





		Ensure that the Python installation directory and its Scripts
sub-directory are in your system path. This may be done by
modifying the global PATH Windows environment variables, or by creating
a .profile file in your MinGW home, containing a line like
export PATH=$PATH:/c/Python27:/c/Python27/Scripts (note that the latter
will work only when you run Theano from an MSYS shell).





		If you are installing the 64 bit version, you will need the following hack
to be able to compile Theano files with GCC (skip this step if you are using
the 32 bit version). In a temporary work directory, copy python27.dll
(found in C:\\Windows\\System32) as well as
python27.def [http://wiki.cython.org/InstallingOnWindows?action=AttachFile&do=get&target=python27.def].
Edit python27.def and replace Py_InitModule4 with Py_InitModule4_64.
Then open an MSYS shell, go to this temporary directory, and run:



dlltool --dllname python27.dll --def python27.def --output-lib libpython27.a










Finally, copy the libpython27.a file that was generated into your
C:\\Python27\\libs folder.





		In order to run Theano’s test-suite, you will need nose [http://somethingaboutorange.com/mrl/projects/nose].
After unpacking its source code (you may use 7-zip [http://www.7-zip.org/]), you can build and install it from within
its code directory by running the following command (either from a Windows
command prompt or an MSYS shell):



python setup.py install























Configuring the Environment


At this point, you should have installed all Theano dependencies.
By default neither Python, GCC, nor Visual Studio was added to the
PATH. Save the following shell script as c:\scisoft\env.bat to
configure the system path:


REM configuration of paths
set VSFORPYTHON="C:\Program Files (x86)\Common Files\Microsoft\Visual C++ for Python\9.0"
set SCISOFT=%~dp0

REM add tdm gcc stuff
set PATH=%SCISOFT%\TDM-GCC-64\bin;%SCISOFT%\TDM-GCC-64\x86_64-w64-mingw32\bin;%PATH%

REM add winpython stuff
CALL %SCISOFT%\WinPython-64bit-2.7.6.4\scripts\env.bat

REM configure path for msvc compilers
REM for a 32 bit installation change this line to
REM CALL %VSFORPYTHON%\vcvarsall.bat
CALL %VSFORPYTHON%\vcvarsall.bat amd64

REM return a shell
cmd.exe /k






The script assumes that you installed WinPython distribution, update the winpython line otherwise.
For a 32 bit installation please change the indicated line to load
32-bit Microsoft Compilers.


You can access the Python shell by double-clicking on
c:\scisoft\env.bat. Please do so, and verify that the following
programs are found:



		where gcc


		where gendef


		where cl


		where nvcc





Finally we need to create a link library for GCC. Open up the Python
shell and cd to c:\SciSoft. Then execute:


gendef WinPython-64bit-2.7.6.4\python-2.7.6.amd64\python27.dll

dlltool --dllname python27.dll --def python27.def --output-lib WinPython-64bit-2.7.6.4\python-2.7.6.amd64\libs\libpython27.a









Installing Theano


Once the dependencies are installed, you can download and install
Theano. We have found that in the long run, the Git install is the
most useful, because you can update it with a single git pull
command. Therefore we recommend it. However, a manual install without
Git is also possible.



Git Install


Theano is hosted on GitHub, you need Git to download it. For Windows,
download and install the MSYSGIT [http://msysgit.github.io/] build.
Open up the Git Shell in the directory in which you want to install
Theano. For the bleeding-edge version execute


git clone https://github.com/Theano/Theano.git






For the latest stable release 0.7 (as of March 2015) run instead:


git clone https://github.com/Theano/Theano.git --branch rel-0.7






Either way, a folder Theano will be created with the library
downloaded to it.





Manual Installation


To get the latest bleeding edge version got to Theano on GitHub [https://github.com/Theano/Theano] and download the latest zip [https://github.com/Theano/Theano/archive/master.zip]. Then unzip it
somewhere.


Alternatively, you can check the latest release release 0.7 (as of March
2015) by going to
https://github.com/Theano/Theano/releases/tag/rel-0.7 and
downloading the zip [https://github.com/Theano/Theano/archive/rel-0.7.zip].





Configuring Theano


Once you have installed Theano, open the Python Shell
(e.g. c:\scisoft\env.bat if you follow the installation directories
from this tutorial) and cd to it. Then run:


python setup.py develop






this step will add the Theano directory to you PYTHON_PATH
environment variable.


At this stage you can check whether Theano works and is able to
compile C code for CPU execution.


Create a test file containing:


import numpy as np
import time
import theano
A = np.random.rand(1000,10000).astype(theano.config.floatX)
B = np.random.rand(10000,1000).astype(theano.config.floatX)
np_start = time.time()
AB = A.dot(B)
np_end = time.time()
X,Y = theano.tensor.matrices('XY')
mf = theano.function([X,Y],X.dot(Y))
t_start = time.time()
tAB = mf(A,B)
t_end = time.time()
print "NP time: %f[s], theano time: %f[s] (times should be close when run on CPU!)" %(
                                           np_end-np_start, t_end-t_start)
print "Result difference: %f" % (np.abs(AB-tAB).max(), )






Then run it. It should execute without problems and the Theano function
should run at a speed similar to the regular NumPy
multiplication. (Both Numpy and Theano should call the same BLAS
routine for matrix multiplication)





Configure Theano for GPU use


Theano can be configured with a .theanorc text file (or
.theanorc.txt, whichever is easier for you to create under
Windows). It should be placed in the directory pointed to by the
%USERPROFILE% variable. Please note, that WinPython changes it to
WinPythonDir\settings (so in our system this corresponds to
c:\scisoft\WinPython-64bit-2.7.6.4\settings.


To use the GPU please write the following configuration file:


[global]
device = gpu
floatX = float32

[nvcc]
flags = --use-local-env  --cl-version=2008






Rerun the simple test file and verify that it runs. Depending on you
GPU, the theano function should run on the GPU much faster than the
CPU matrix multiplication performed by NumPy.
You can also find additional test code and useful GPU tips on the
Using the GPU page.





Running Theano’s test-suite


Currently, due to memory fragmentation issue in Windows, the
test-suite breaks at some point when using theano-nose, with many error
messages looking
like: DLL load failed: Not enough storage is available to process this
command. As a workaround, you can instead run:



theano-nose --batch










This will run tests in batches of 100, which should avoid memory errors.
Note that this script calls nosetests, which may require being run from
within an MSYS shell if you installed Nose manually as described above.



Note


In Theano versions <= 0.5, theano-nose was not included.  If you
are working with such a version, you can call this command instead:


python theano/tests/run_tests_in_batch.py













Compiling a faster BLAS


If you installed Python through WinPython or EPD, Theano will automatically
link with the MKL library, so you should not need to compile your own BLAS.



Note


The instructions below have not been tested in a Windows 64 bit environment.




If you want a faster and/or multi-threaded BLAS library, you can
compile OpenBLAS (ATLAS may work too, but was not tested, and is
usually reported to be slower and more difficult to compile – especially
on Windows).
OpenBLAS can be downloaded as a zip file from
its website [http://xianyi.github.io/OpenBLAS/]
(we tested v0.2.6).
To compile it, you will also need MSYS and wget (installation steps are
described below).


If you already have a full install of MinGW, you should
have MSYS included in it, and thus should be able to start a MinGW shell.
If that is the case, you can skip the following MSYS installation steps.
Note that these steps were written for Python(x,y), but should also work
for other bundle Python distributions like EPD (changing paths accordingly,
for instance in EPD 7.3.2 the MinGW folder is
EPD7.3.2\EGG-INFO\mingw\usr\i686-w64-mingw32).
To install MSYS on top of the MinGW installation included within Python(x,y),
do as follows:



		Download the mingw-get command-line installer binary [http://sourceforge.net/projects/mingw/files/Installer/mingw-get/].





		Unpack its content into your pythonxy\mingw directory.





		In a prompt (cmd), install MSYS with



mingw-get install msys-base










If mingw-get cannot be found automatically, just navigate first into the
folder were it was extracted (it is found in the bin subfolder).





		Edit pythonxy\mingw\msys\1.0\msys.bat (e.g. in Wordpad) and add as first
line set HOME=%USERPROFILE%. Then create an easily accessible shortcut
(e.g. on your desktop) to this file, run it and within the MSYS
console, run the MSYS post-install script:



/postinstall/pi.sh










It will ask for your MinGW installation directory (e.g.
c:/pythonxy/mingw; note the forward slashes).








Once you have a working MinGW/MSYS shell environment, you can go on as
follows:




		Install wget by running the setup program you can download on the
wget website [http://gnuwin32.sourceforge.net/packages/wget.htm].
Note that this setup does not add wget into the system PATH, so you
will need to modify the PATH environment variable accordingly (either in
Windows or in a .profile startup file in your MinGW home). Once this is done,
type wget --version in a MinGW shell to verify that it is running
properly. Note also that if you are behind a proxy, you should set up your
HTTP_PROXY environment variable, or use a custom wgetrc config file
for wget to be able to download files.


		Unzip OpenBLAS and, in a MinGW shell, go into the corresponding directory.


		Compile OpenBLAS with:






quickbuild.win32 1>log.txt 2>err.txt






(use quickbuild.win64 for 64-bit Windows).
Compilation can take a while, so now is a good time to take a break.
When it is done, you should have libopenblas.dll in your OpenBLAS
folder. If that is not the case, check the err.txt log for build errors.







		Make sure that libopenblas.dll is in a folder that is in your PATH.


		Modify your .theanorc (or .theanorc.txt) with
ldflags = -LX:\\YYY\\ZZZ -lopenblas where X:\\YYY\\ZZZ is the path
to the folder containing libopenblas.dll.
This setting can also be changed in Python for testing purpose (in which
case it will remain only for the duration of your Python session):






theano.config.blas.ldflags = "-LX:\\YYY\\YYY -lopenblas"











		To test the BLAS performance, you can run the script
theano/misc/check_blas.py.
Note that you may control the number of threads used by OpenBLAS with
the OPENBLAS_NUM_THREADS environment variable (default behavior is to use
all available cores).
Here are some performance results on an Intel Core2 Duo 1.86 GHz,
compared to using NumPy’s BLAS or the un-optimized standard BLAS
(compiled manually from its source code).
Note that we report here results for GotoBLAS2 which is the ancestor of
OpenBLAS (this benchmark still needs to be updated with OpenBLAS results):




		GotoBLAS2 (2 threads): 16s


		NumPy (1 thread): 48s


		Standard BLAS (un-optimized, 1 thread): 166s










		Conclusions:


		
		The unoptimized standard BLAS is very slow and should not be used.


		The Windows binaries of NumPy were compiled with ATLAS and are surprisingly fast.


		GotoBLAS2 is even faster, in particular if you can use multiple cores.






















Note


If you get a DLL load failed error message, it typically means that
a required DLL was not found in the PATH. If it happens only when you are
using OpenBLAS, it means it is either libopenblas.dll itself or one of its
dependencies. In the case where it is a dependency, you can use the
Dependency Walker [http://www.dependencywalker.com/] utility to figure out
which one.
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Easy Installation of an Optimized Theano on Current Ubuntu


For Ubuntu 11.10 through 14.04:


sudo apt-get install python-numpy python-scipy python-dev python-pip python-nose g++ libopenblas-dev git
sudo pip install Theano






For Ubuntu 11.04:


sudo apt-get install python-numpy python-scipy python-dev python-pip python-nose g++ git libatlas3gf-base libatlas-dev
sudo pip install Theano







Note


If you have error that contain “gfortran” in it, like this one:



ImportError: (‘/home/Nick/.theano/compiledir_Linux-2.6.35-31-generic-x86_64-with-Ubuntu-10.10-maverick–2.6.6/tmpIhWJaI/0c99c52c82f7ddc775109a06ca04b360.so: undefined symbol: _gfortran_st_write_done’



The problem is probably that NumPy is linked with a different blas
then then one currently available (probably ATLAS). There is 2
possible fixes:



		Uninstall ATLAS and install OpenBLAS.


		Use the Theano flag “blas.ldflags=-lblas -lgfortran”





1) is better as OpenBLAS is faster then ATLAS and NumPy is
probably already linked with it. So you won’t need any other
change in Theano files or Theano configuration.





Note


If you are behind a proxy, you must do some extra configuration steps
before starting the installation. You must set the environment
variable http_proxy to the proxy address. Using bash this is
accomplished with the command
export http_proxy="http://user:pass@my.site:port/"
You can also provide the --proxy=[user:pass@]url:port parameter
to pip. The [user:pass@] portion is optional.





Note


We use pip for 2 reasons. First, it allows “import module;
module.test()” to work correctly. Second, the installation of NumPy
1.6 or 1.6.1 with easy_install raises an ImportError at the end of
the installation. To my knowledge we can ignore this error, but
this is not completely safe. easy_install with NumPy 1.5.1 does not
raise this error.





Note


This page describes how to install Theano for Python 2. If you have
installed Python 3 on your system, maybe you need to change the
command pip to pip-2.7 to specify to install it for Python 2, as
sometimes the pip command refers to the Python 3 version.


The development version of Theano supports Python 3.3 and
probably supports Python 3.2, but we do not test on it.





Bleeding Edge Installs


If you would like, instead, to install the bleeding edge Theano (from github)
such that you can edit and contribute to Theano, replace the pip install Theano
command with:


git clone git://github.com/Theano/Theano.git
cd Theano
python setup.py develop --user
cd ..









VirtualEnv


If you would like to install Theano in a VirtualEnv, you will want to pass the
–system-site-packages flag when creating the VirtualEnv so that it will pick up
the system-provided Numpy and SciPy.


virtualenv --system-site-packages -p python2.7 theano-env
source theano-env/bin/activate
pip install Theano







Test the newly installed packages




		NumPy (~30s): python -c "import numpy; numpy.test()"


		SciPy (~1m): python -c "import scipy; scipy.test()"


		Theano (~30m): python -c "import theano; theano.test()"









NumPy 1.6.2, 1.7.0 and 1.7.1, have a bug where it marks some ndarrays
as not aligned. Theano does not support unaligned arrays, and raises
an Exception when that happens.  This can cause one test to fail with
an unaligned error with those versions of NumPy. You can ignore that
test error as at worst, your code will crash. If this happens, you can
install another NumPy version to fix this problem. NumPy 1.6.2 is used
in Ubuntu 12.10 and NumPy 1.7.1 is used in Ubuntu 13.04.





Speed test Theano/BLAS


It is recommended to test your Theano/BLAS integration. There are many versions
of BLAS that exist and there can be up to 10x speed difference between them.
Also, having Theano link directly against BLAS instead of using NumPy/SciPy as
an intermediate layer reduces the computational overhead. This is
important for BLAS calls to ger, gemv and small gemm operations
(automatically called when needed when you use dot()). To run the
Theano/BLAS speed test:


python `python -c "import os, theano; print os.path.dirname(theano.__file__)"`/misc/check_blas.py






This will print a table with different versions of BLAS/numbers of
threads on multiple CPUs and GPUs. It will also print some Theano/NumPy
configuration information. Then, it will print the running time of the same
benchmarks for your installation. Try to find a CPU similar to yours in
the table, and check that the single-threaded timings are roughly the same.


Theano should link to a parallel version of Blas and use all cores
when possible. By default it should use all cores. Set the environment
variable “OMP_NUM_THREADS=N” to specify to use N threads.



Note


It is possible to have a faster installation of Theano than the one these
instructions provide, but this will make the installation more
complicated and/or may require that you buy software. This is a simple set
of installation instructions that will leave you with a relatively
well-optimized version that uses only free software. With more work or by
investing money (i.e. buying a license to a proprietary BLAS
implementation), it is possible to gain further performance.







Updating Theano


If you followed these installation instructions, you can execute this command
to update only Theano:


sudo pip install --upgrade --no-deps theano






If you want to also installed NumPy/SciPy with pip instead of the
system package, you can run this:


sudo pip install --upgrade theano









Updating Bleeding Edge Installs


Change to the Theano directory and run:


git pull









Manual Openblas instruction


The openblas included in Ubuntu is limited to 2 threads. If you want
to use more cores at the same time, you will need to compile it
yourself. Here is some code that will help you.


# remove openblas if you installed it
sudo apt-get remove libopenblas-base
# Download the development version of OpenBLAS
git clone git://github.com/xianyi/OpenBLAS
cd OpenBLAS
make FC=gfortran
sudo make PREFIX=/usr/local/ install
# Tell Theano to use OpenBLAS.
# This works only for the current user.
# Each Theano user on that computer should run that line.
echo -e "\n[blas]\nldflags = -lopenblas\n" >> ~/.theanorc









Contributed GPU instruction


Basic configuration for the GPU Using the GPU.


Ubuntu 11.10/12.04 (probably work on 11.04 too):


sudo apt-add-repository ppa:ubuntu-x-swat/x-updates
sudo apt-get update
sudo apt-get install nvidia-current






Then you need to fetch latest CUDA tool kit (download ubuntu 11.04 32/64bit package)
from here [http://developer.nvidia.com/cuda-downloads].


Ubuntu 14.04:


sudo apt-get install nvidia-current
sudo apt-get install nvidia-cuda-toolkit # As of October 31th, 2014, provide cuda 5.5, not the latest cuda 6.5






If you want cuda 6.5, you can download packages from nvidia [http://developer.nvidia.com/cuda-downloads] for Ubuntu 14.04.


If you downloaded the run package (the only one available for CUDA 5.0 and older), you install it like this:


chmod a+x XXX.sh
sudo ./XXX.sh






Since CUDA 5.5, Nvidia provide a DEB package. If you don’t know how to
intall it, just double click on it from the graphical interface. It
should ask if you want to install it. On Ubuntu 14.04, you need to run
this in your terminal:


sudo apt-get update
sudo apt-get install cuda






You must reboot the computer after the driver installation. To test
that it was loaded correctly after the reboot, run the command
nvidia-smi from the command line.


You probably need to change the default version of gcc as
explained by Benjamin J. McCann [http://www.benmccann.com/blog/installing-cuda-and-theano/] if the package you downloaded is for another Ubuntu version:


sudo apt-get install nvidia-cuda-toolkit g++-4.4 gcc-4.4
# On Ubuntu 11.10 and 12.04, you probably need to change gcc-4.5 to gcc-4.6 on the next line.
sudo update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-4.5 40 --slave /usr/bin/g++ g++ /usr/bin/g++-4.5
sudo update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-4.4 60 --slave /usr/bin/g++ g++ /usr/bin/g++-4.4
sudo update-alternatives --config gcc









Test GPU configuration


THEANO_FLAGS=floatX=float32,device=gpu python /usr/lib/python2.*/site-packages/theano/misc/check_blas.py







Note


Ubuntu 10.04 LTS: default gcc version 4.4.3. gcc 4.1.2, 4.3.4 available.


Ubuntu 11.04: default gcc version 4.5.2. gcc 4.4.5 available.


Ubuntu 11.10: default gcc version 4.6.1. gcc 4.4.6 and 4.5.3 available.


Ubuntu 12.04 LTS: default gcc version 4.6.3. gcc 4.4.7 and 4.5.3 available.


Ubuntu 12.10: default gcc version 4.7.2. gcc 4.4.7, 4.5.4 and 4.6.3 available.


Ubuntu 13.10: default gcc version 4.8.1. gcc 4.4.7, 4.6.4 and 4.7.3 available.


Ubuntu 14.04: default gcc version 4.8.2, gcc 4.4.7,, 4.6.4, and 4.7.3 available.












          

      

      

    


    
        © Copyright 2008--2015, LISA lab.
      Last updated on Mar 27, 2015.
      Created using Sphinx 1.2.2.
    

  

crei2013/introduction.html


    
      Navigation


      
        		
          index


        		
          modules |


        		Theano 0.7 documentation »

 
      


    


    
      
          
            
  
Introduction



Background Questionaire



		Who has used Theano before?







		What did you do with it?










		Who has used Python? NumPy? SciPy? matplotlib?


		Who has used iPython?







		Who has used it as a distributed computing engine?










		Who has done C/C++ programming?


		Who has organized computation around a particular physical memory layout?


		Who has used a multidimensional array of >2 dimensions?


		Who has written a Python module in C before?







		Who has written a program to generate Python modules in C?










		Who has used a templating engine?


		Who has programmed a GPU before?







		Using OpenGL / shaders ?


		Using CUDA (runtime? / driver?)


		Using PyCUDA ?


		Using OpenCL / PyOpenCL ?


		Using cudamat / gnumpy ?


		Other?










		Who has used Cython?








Python in one slide



		General-purpose high-level OO interpreted language


		Emphasizes code readability


		Comprehensive standard library


		Dynamic type and memory management


		Built-in types: int, float, str, list, dict, tuple, object


		Slow execution


		Popular in web-dev and scientific communities





#######################
# PYTHON SYNTAX EXAMPLE
#######################
a = 1                     # no type declaration required!
b = (1, 2, 3)             # tuple of three int literals
c = [1, 2, 3]             # list of three int literals
d = {'a': 5, b: None}     # dictionary of two elements
                          # N.B. string literal, None

print d['a']              # square brackets index
# -> 5
print d[(1, 2, 3)]        # new tuple == b, retrieves None
# -> None
print d[6]
# raises KeyError Exception

x, y, z = 10, 100, 100    # multiple assignment from tuple
x, y, z = b               # unpacking a sequence

b_squared = [b_i**2 for b_i in b]  # list comprehension

def foo(b, c=3):          # function w default param c
    return a + b + c      # note scoping, indentation

foo(5)                    # calling a function
# -> 1 + 5 + 3 == 9       # N.B. scoping
foo(b=6, c=2)             # calling with named args
# -> 1 + 6 + 2 == 9

print b[1:3]              # slicing syntax

class Foo(object):        # Defining a class
    def __init__(self):
        self.a = 5
    def hello(self):
        return self.a

f = Foo()                 # Creating a class instance
print f.hello()           # Calling methods of objects
# -> 5

class Bar(Foo):           # Defining a subclass
    def __init__(self, a):
        self.a = a

print Bar(99).hello()     # Creating an instance of Bar
# -> 99









NumPy in one slide



		Python floats are full-fledged objects on the heap







		Not suitable for high-performance computing!










		NumPy provides a N-dimensional numeric array in Python







		Perfect for high-performance computing.


		Slice are return view (no copy)










		NumPy provides







		elementwise computations


		linear algebra, Fourier transforms


		pseudorandom numbers from many distributions










		SciPy provides lots more, including







		more linear algebra


		solvers and optimization algorithms


		matlab-compatible I/O


		I/O and signal processing for images and audio









##############################
# Properties of NumPy arrays
# that you really need to know
##############################

import numpy as np          # import can rename
a = np.random.rand(3, 4, 5) # random generators
a32 = a.astype('float32')   # arrays are strongly typed

a.ndim                      # int: 3
a.shape                     # tuple: (3, 4, 5)
a.size                      # int: 60
a.dtype                     # np.dtype object: 'float64'
a32.dtype                   # np.dtype object: 'float32'

assert a[1, 1, 1] != 10     # a[1, 1, 1] is a view
a[1, 1, 1] = 10             # So affectation to it change the
assert a[1, 1, 1] == 10     # original array






Arrays can be combined with numeric operators, standard mathematical
functions. NumPy has great documentation [http://docs.scipy.org/doc/numpy/reference/].


Training an MNIST-ready classification neural network in pure NumPy might look like this:


#########################
# NumPy for Training a
# Neural Network on MNIST
#########################

x = np.load('data_x.npy')
y = np.load('data_y.npy')
w = np.random.normal(
    avg=0,
    std=.1,
    size=(784, 500))
b = np.zeros((500,))
v = np.zeros((500, 10))
c = np.zeros((10,))

batchsize = 100
for i in xrange(1000):
    x_i = x[i * batchsize: (i + 1) * batchsize]
    y_i = y[i * batchsize: (i + 1) * batchsize]

    hidin = np.dot(x_i, w) + b

    hidout = np.tanh(hidin)

    outin = np.dot(hidout, v) + c
    outout = (np.tanh(outin) + 1) / 2.0

    g_outout = outout - y_i
    err = 0.5 * np.sum(g_outout) ** 2

    g_outin = g_outout * outout * (1.0 - outout)

    g_hidout = np.dot(g_outin, v.T)
    g_hidin = g_hidout * (1 - hidout ** 2)

    b -= lr * np.sum(g_hidin, axis=0)
    c -= lr * np.sum(g_outin, axis=0)
    w -= lr * np.dot(x_i.T, g_hidin)
    v -= lr * np.dot(hidout.T, g_outin)









What’s missing?



		Non-lazy evaluation (required by Python) hurts performance


		NumPy is bound to the CPU


		NumPy lacks symbolic or automatic differentiation





Now let’s have a look at the same algorithm in Theano, which runs 15 times faster if
you have GPU (I’m skipping some dtype-details which we’ll come back to).


#########################
# Theano for Training a
# Neural Network on MNIST
#########################

import numpy as np

import theano
import theano.tensor as tensor

x = np.load('data_x.npy')
y = np.load('data_y.npy')

# symbol declarations
sx = tensor.matrix()
sy = tensor.matrix()
w = theano.shared(np.random.normal(avg=0, std=.1,
                                   size=(784, 500)))
b = theano.shared(np.zeros(500))
v = theano.shared(np.zeros((500, 10)))
c = theano.shared(np.zeros(10))

# symbolic expression-building
hid = tensor.tanh(tensor.dot(sx, w) + b)
out = tensor.tanh(tensor.dot(hid, v) + c)
err = 0.5 * tensor.sum(out - sy) ** 2
gw, gb, gv, gc = tensor.grad(err, [w, b, v, c])

# compile a fast training function
train = theano.function([sx, sy], err,
    updates={
        w: w - lr * gw,
        b: b - lr * gb,
        v: v - lr * gv,
        c: c - lr * gc})

# now do the computations
batchsize = 100
for i in xrange(1000):
    x_i = x[i * batchsize: (i + 1) * batchsize]
    y_i = y[i * batchsize: (i + 1) * batchsize]
    err_i = train(x_i, y_i)









Theano in one slide



		High-level domain-specific language tailored to numeric computation


		Compiles most common expressions to C for CPU and GPU.


		Limited expressivity means lots of opportunities for expression-level optimizations







		No function call -> global optimization


		Strongly typed -> compiles to machine instructions


		Array oriented -> parallelizable across cores


		Support for looping and branching in expressions










		Expression substitution optimizations automatically draw
on many backend technologies for best performance.







		FFTW, MKL, ATLAS, SciPy, Cython, CUDA


		Slower fallbacks always available










		Automatic differentiation and R op


		Sparse matrices








Project status



		Mature: theano has been developed and used since January 2008 (5.5 yrs old)


		Driven over 87 research papers


		Good user documentation


		Active mailing list with participants from outside our lab


		Core technology for a funded Silicon-Valley startup


		Many contributors (some from outside our lab)


		Used to teach IFT6266 for many years


		Used for research at Google and Yahoo.


		Downloads (January 2011 -  June 8 2011):







		Pypi (16 July 2013): 60k total, 159 last day, 823 last week


		Github (bleeding edge repository): unknown












Why scripting for GPUs?


They Complement each other:



		GPUs are everything that scripting/high level languages are not







		Highly parallel


		Very architecture-sensitive


		Built for maximum FP/memory throughput


		So hard to program that meta-programming is easier.










		CPU: largely restricted to control







		Optimized for sequential code and low latency (rather than high throughput)


		Tasks (1000/sec)


		Scripting fast enough









Best of both: scripted CPU invokes JIT-compiled kernels on GPU.





How Fast are GPUs?



		Theory







		Intel Core i7 980 XE (107Gf/s float64) 6 cores


		NVIDIA C2050 (515 Gf/s float64, 1Tf/s float32) 480 cores


		NVIDIA GTX580 (1.5Tf/s float32) 512 cores


		GPUs are faster, cheaper, more power-efficient










		Practice (our experience)







		Depends on algorithm and implementation!


		Reported speed improvements over CPU in lit. vary widely (.01x to 1000x)


		Matrix-matrix multiply speedup: usually about 10-20x.


		Convolution speedup: usually about 15x.


		Elemwise speedup: slower or up to 100x (depending on operation and layout)


		Sum: can be faster or slower depending on layout.










		Benchmarking is delicate work...







		How to control quality of implementation?







		How much time was spent optimizing CPU vs GPU code?










		Theano goes up to 100x faster on GPU because it uses only one CPU core


		Theano can be linked with multi-core capable BLAS (GEMM and GEMV)










		If you see speedup > 100x, the benchmark is probably not fair.
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Theano Tutorial @ CREI 2013


July 19, 2013, Sherbrook, Québec, Canada.


Theano is python software for evaluating complicated array expressions.


What does it do?




		aggressive expression optimizations,


		automatic GPU use,


		symbolic differentiation and R op.









It complements the Python numeric/scientific software stack (e.g. NumPy, SciPy,
scikits, matplotlib, PIL.)


Design and feature set has been driven by machine learning research
at the University of
Montreal (groups of Yoshua Bengio, Pascal Vincent, Aaron Courville and Roland Memisevic)
The result is a very good library for doing research in deep
learning and neural network training, and a flexible framework for
many other models and algorithms in machine learning more generally.


It has proven to be useful for implementing:




		linear and nonlinear neural network classifiers


		convolutional models


		Energy models: RBM, DBN, GRBM, ssRBM, AIS


		Auto-encoders: DAE, CAE


		GP regression


		sparse coding


		recurrent neural networks, echo state, (HMM?)


		online and batch learning and optimization


		Even SVM!









As people’s needs change this list will grow, but Theano is built
around vector, matrix, and tensor expressions; there is little reason
to use it for calculations on other data structures except. There is
also some sparse matrix support.



Contents


The structured part of these lab sessions will be a walk-through of the following
material. Interleaved with this structured part will be blocks of time for
individual or group work.  The idea is that you can try out Theano and get help
from gurus on hand if you get stuck.




		Introduction
		Background Questionaire


		Python in one slide


		NumPy in one slide


		What’s missing?


		Theano in one slide


		Project status


		Why scripting for GPUs?


		How Fast are GPUs?








		Theano
		Pointers


		Description


		Simple example


		Exercise 1


		Real example


		Theano flags


		Exercise 2


		GPU


		Exercise 3


		Symbolic variables


		Differentiation details


		Old Benchmarks


		New Benchmarks








		Advanced Theano
		Profiling


		Compilation pipeline


		Inplace optimization


		Conditions


		Loops


		Exercise 4


		Exercise 5


		Printing/Drawing Theano graphs


		Debugging


		Known limitations








		GpuNdArray
		Why a common GPU ndarray?


		Design Goals


		Final Note








		Extending Theano
		Theano Graphs


		Op Structure


		Op Example


		How To Test it
		Basic Tests


		Testing the infer_shape


		Testing the gradient


		Testing the Rop


		Testing GPU Ops








		Running Your Tests
		theano-nose


		nosetests


		In-file








		Exercise


		as_op
		as_op Example


		Exercise








		Random numbers in tests


		Documentation


		Final Note
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GpuNdArray



Why a common GPU ndarray?



		Currently there are at least 4 different GPU array data structures in use by Python packages
		CudaNdarray (Theano), GPUArray (PyCUDA), CUDAMatrix (cudamat), GPUArray (PyOpenCL), ...


		There are even more if we include other languages








		All of them are a subset of the functionality of numpy.ndarray on the GPU


		Lots of duplicated effort
		GPU code is harder/slower to do {bf correctly} and {bf fast} than on the CPU/Python








		Lack of a common array API makes it harder to port/reuse code


		Also harder to find/distribute code


		Divides development work








Design Goals



		Make it VERY similar to numpy.ndarray


		Be compatible with both CUDA and OpenCL


		Have the base object accessible from C to allow collaboration with more projects, across high-level languages
		We want people from C, C++, Ruby, R, ... all use the same base GPU N-dimensional array














Final Note



		Under development


		Will be the next GPU array container for Theano (this summer!)


		Probably also for PyCUDA, PyOpenCL


		Mailing list: http://lists.tiker.net/listinfo/gpundarray
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Theano



Pointers



		http://deeplearning.net/software/theano/


		Announcements mailing list: http://groups.google.com/group/theano-announce


		User mailing list: http://groups.google.com/group/theano-users


		Deep Learning Tutorials: http://www.deeplearning.net/tutorial/


		Installation: https://deeplearning.net/software/theano/install.html








Description



		Mathematical symbolic expression compiler


		Dynamic C/CUDA code generation


		Efficient symbolic differentiation
		Theano computes derivatives of functions with one or many inputs.








		Speed and stability optimizations
		Gives the right answer for log(1+x) even if x is really tiny.








		Works on Linux, Mac and Windows


		Transparent use of a GPU
		float32 only for now (working on other data types)


		Still in experimental state on Windows


		On GPU data-intensive calculations are typically between 6.5x and 44x faster. We’ve seen speedups up to 140x








		Extensive unit-testing and self-verification
		Detects and diagnoses many types of errors








		On CPU, common machine learning algorithms are 1.6x to 7.5x faster than competitive alternatives
		including specialized implementations in C/C++, NumPy, SciPy, and Matlab








		Expressions mimic NumPy’s syntax & semantics


		Statically typed and purely functional


		Some sparse operations (CPU only)








Simple example


>>> import theano
>>> a = theano.tensor.vector("a")      # declare symbolic variable
>>> b = a + a ** 10                    # build symbolic expression
>>> f = theano.function([a], b)        # compile function
>>> print f([0, 1, 2])                 # prints `array([0, 2, 1026])`












		Unoptimized graph
		Optimized graph





		[image: ../_images/f_unoptimized1.png]

		[image: ../_images/f_optimized1.png]








Symbolic programming = Paradigm shift: people need to use it to understand it.





Exercise 1


import theano
a = theano.tensor.vector()      # declare variable
out = a + a ** 10               # build symbolic expression
f = theano.function([a], out)   # compile function
print f([0, 1, 2])
# prints `array([0, 2, 1026])`

theano.printing.pydotprint_variables(b, outfile="f_unoptimized.png", var_with_name_simple=True)
theano.printing.pydotprint(f, outfile="f_optimized.png", var_with_name_simple=True)






Modify and execute the example to do this expression: a ** 2 + b ** 2 + 2 * a * b





Real example


Logistic Regression



		GPU-ready


		Symbolic differentiation


		Speed optimizations


		Stability optimizations





import numpy
import theano
import theano.tensor as tt
rng = numpy.random

N = 400
feats = 784
D = (rng.randn(N, feats), rng.randint(size=N, low=0, high=2))
training_steps = 10000

# Declare Theano symbolic variables
x = tt.matrix("x")
y = tt.vector("y")
w = theano.shared(rng.randn(feats), name="w")
b = theano.shared(0., name="b")
print "Initial model:"
print w.get_value(), b.get_value()

# Construct Theano expression graph
p_1 = 1 / (1 + tt.exp(-tt.dot(x, w) - b))   # Probability that target = 1
prediction = p_1 > 0.5                      # The prediction thresholded
xent = -y * tt.log(p_1) - (1 - y) * tt.log(1 - p_1)  # Cross-entropy loss
cost = xent.mean() + 0.01 * (w ** 2).sum()  # The cost to minimize
gw, gb = tt.grad(cost, [w, b])

# Compile
train = theano.function(
    inputs=[x, y],
    outputs=[prediction, xent],
    updates=[(w, w - 0.1 * gw),
             (b, b - 0.1 * gb)],
    name='train')

predict = theano.function(inputs=[x], outputs=prediction,
                          name='predict')

# Train
for i in range(training_steps):
    pred, err = train(D[0], D[1])

print "Final model:"
print w.get_value(), b.get_value()
print "target values for D:", D[1]
print "prediction on D:", predict(D[0])






Optimizations:


Where are those optimization applied?



		log(1+exp(x))


		1 / (1 + tt.exp(var)) (sigmoid)


		log(1-sigmoid(var)) (softplus, stabilisation)


		GEMV (matrix-vector multiply from BLAS)


		Loop fusion





p_1 = 1 / (1 + tt.exp(-tt.dot(x, w) - b))
# 1 / (1 + tt.exp(var)) -> sigmoid(var)
xent = -y * tt.log(p_1) - (1 - y) * tt.log(1 - p_1)
# Log(1-sigmoid(var)) -> -sigmoid(var)
prediction = p_1 > 0.5
cost = xent.mean() + 0.01 * (w ** 2).sum()
gw,gb = tt.grad(cost, [w, b])

train = theano.function(
          inputs=[x, y],
          outputs=[prediction, xent],
          # w - 0.1 * gw: GEMV with the dot in the grad
          updates=[(w, w - 0.1 * gw),
                   (b, b - 0.1 * gb)])









Theano flags


Theano can be configured with flags. They can be defined in two ways



		With an environment variable: THEANO_FLAGS="mode=ProfileMode,ProfileMode.profile_memory=True"


		With a configuration file that defaults to ~/.theanorc








Exercise 2


import numpy
import theano
import theano.tensor as tt
rng = numpy.random

N = 400
feats = 784
D = (rng.randn(N, feats).astype(theano.config.floatX),
rng.randint(size=N,low=0, high=2).astype(theano.config.floatX))
training_steps = 10000

# Declare Theano symbolic variables
x = tt.matrix("x")
y = tt.vector("y")
w = theano.shared(rng.randn(feats).astype(theano.config.floatX), name="w")
b = theano.shared(numpy.asarray(0., dtype=theano.config.floatX), name="b")
x.tag.test_value = D[0]
y.tag.test_value = D[1]
#print "Initial model:"
#print w.get_value(), b.get_value()


# Construct Theano expression graph
p_1 = 1 / (1 + tt.exp(-tt.dot(x, w) - b))  # Probability of having a one
prediction = p_1 > 0.5  # The prediction that is done: 0 or 1
xent = -y * tt.log(p_1) - (1 - y) * tt.log(1 - p_1)  # Cross-entropy
cost = xent.mean() + 0.01 * (w**2).sum()  # The cost to optimize
gw,gb = tt.grad(cost, [w, b])

# Compile expressions to functions
train = theano.function(
            inputs=[x, y],
            outputs=[prediction, xent],
            updates={w: w - 0.01 * gw, b: b - 0.01 * gb},
            name="train")
predict = theano.function(inputs=[x], outputs=prediction,
                          name="predict")

if any([x.op.__class__.__name__=='Gemv' for x in
        train.maker.fgraph.toposort()]):
    print 'Used the cpu'
elif any([x.op.__class__.__name__=='GpuGemm' for x in
          train.maker.fgraph.toposort()]):
    print 'Used the gpu'
else:
    print 'ERROR, not able to tell if theano used the cpu or the gpu'
    print train.maker.fgraph.toposort()



for i in range(training_steps):
    pred, err = train(D[0], D[1])
#print "Final model:"
#print w.get_value(), b.get_value()

print "target values for D"
print D[1]

print "prediction on D"
print predict(D[0])

# Print the graph used in the slides
theano.printing.pydotprint(predict,
                           outfile="pics/logreg_pydotprint_predic.png",
                           var_with_name_simple=True)
theano.printing.pydotprint_variables(prediction,
                           outfile="pics/logreg_pydotprint_prediction.png",
                           var_with_name_simple=True)
theano.printing.pydotprint(train,
                           outfile="pics/logreg_pydotprint_train.png",
                           var_with_name_simple=True)






Modify and execute the example to run on CPU with floatX=float32



		You will need to use: theano.config.floatX and ndarray.astype("str")








GPU



		Only 32 bit floats are supported (being worked on)


		Only 1 GPU per process. Wiki page on using multiple process for multiple GPU


		Use the Theano flag device=gpu to tell to use the GPU device







		Use device=gpu{0, 1, ...} to specify which GPU if you have more than one


		Shared variables with float32 dtype are by default moved to the GPU memory space










		Use the Theano flag floatX=float32







		Be sure to use floatX (theano.config.floatX) in your code


		Cast inputs before putting them into a shared variable


		Cast “problem”: int32 with float32 to float64







		Insert manual cast in your code or use [u]int{8,16}


		The mean operator is worked on to make the output stay in float32.














		Use the Theano flag force_device=True, to exit if Theano isn’t able to use a GPU.
		Theano 0.6rc4 will have the combination of force_device=True
and device=cpu disable the GPU.














Exercise 3



		Modify and execute the example of Exercise 2 to run with floatX=float32 on GPU


		Time with: time python file.py








Symbolic variables



		# Dimensions







		tt.scalar, tt.vector, tt.matrix, tt.tensor3, tt.tensor4










		Dtype







		tt.[fdczbwil]vector (float32, float64, complex64, complex128, int8, int16, int32, int64)


		tt.vector to floatX dtype


		floatX: configurable dtype that can be float32 or float64.










		Custom variable







		All are shortcuts to: tt.tensor(dtype, broadcastable=[False]*nd)


		Other dtype: uint[8,16,32,64], floatX









Creating symbolic variables: Broadcastability



		Remember what I said about broadcasting?


		How to add a row to all rows of a matrix?


		How to add a column to all columns of a matrix?





Details regarding symbolic broadcasting...



		Broadcastability must be specified when creating the variable


		The only shorcut with broadcastable dimensions are: tt.row and tt.col


		For all others: tt.tensor(dtype, broadcastable=([False or True])*nd)








Differentiation details


>>> gw,gb = tt.grad(cost, [w,b])







		tt.grad works symbolically: takes and returns a Theano variable


		tt.grad can be compared to a macro: it can be applied multiple times


		tt.grad takes scalar costs only


		Simple recipe allows to compute efficiently vector x Jacobian and vector x Hessian


		We are working on the missing optimizations to be able to compute efficently the full Jacobian and Hessian and Jacobian x vector








Old Benchmarks


Example:



		Multi-layer perceptron


		Convolutional Neural Networks


		Misc Elemwise operations





Competitors: NumPy + SciPy, MATLAB, EBLearn, Torch5, numexpr



		EBLearn, Torch5: specialized libraries written by practitioners specifically for these tasks


		numexpr: similar to Theano, ‘virtual machine’ for elemwise expressions








New Benchmarks


Example [http://arxiv.org/pdf/1211.5590v1.pdf] (Page 7 and 9):



		Logistic regression, MLP with 1 and 3 layers


		Recurrent neural networks





Competitors: Torch7, RNNLM



		Torch7, RNNLM: specialized libraries written by practitioners specifically for these tasks
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Advanced Theano



Profiling



		To replace the default mode with this mode, use the Theano flags profile=True


		To enable the memory profiling use the flags profile_memory=True





Theano output:


Function profiling
==================
  Message: train
  Time in 10000 calls to Function.__call__: 7.171231e+00s
  Time in Function.fn.__call__: 6.686692e+00s (93.243%)
  Time in thunks: 6.511275e+00s (90.797%)
  Total compile time: 6.550491e-01s
    Theano Optimizer time: 5.976810e-01s
       Theano validate time: 1.260662e-02s
    Theano Linker time (includes C, CUDA code generation/compiling): 2.649593e-02s

Class
---
<% time> <sum %> <apply time> <time per call> <type> <#call> <#apply> <Class name>
  87.0%    87.0%       5.665s       2.83e-04s     C     20000        2   <class 'theano.tensor.blas_c.CGemv'>
  11.5%    98.4%       0.746s       7.46e-06s     C     100000       10   <class 'theano.tensor.elemwise.Elemwise'>
   0.7%    99.1%       0.045s       2.27e-06s     C     20000        2   <class 'theano.tensor.basic.Alloc'>
   0.5%    99.6%       0.030s       1.01e-06s     C     30000        3   <class 'theano.tensor.elemwise.DimShuffle'>
   0.2%    99.8%       0.013s       1.34e-06s     C     10000        1   <class 'theano.tensor.elemwise.Sum'>
   0.2%   100.0%       0.012s       6.00e-07s     C     20000        2   <class 'theano.tensor.opt.Shape_i'>
   ... (remaining 0 Classes account for   0.00%(0.00s) of the runtime)

Ops
---
<% time> <sum %> <apply time> <time per call> <type> <#call> <#apply> <Op name>
  87.0%    87.0%       5.665s       2.83e-04s     C     20000        2   CGemv{inplace}
   6.9%    93.9%       0.452s       4.52e-05s     C     10000        1   Elemwise{Composite{[Composite{[Composite{[sub(mul(i0, i1), neg(i2))]}(
   1.8%    95.7%       0.116s       1.16e-05s     C     10000        1   Elemwise{Composite{[Composite{[Composite{[Composite{[mul(i0, add(i1, i
   1.7%    97.4%       0.109s       1.09e-05s     C     10000        1   Elemwise{ScalarSigmoid{output_types_preference=transfer_type{0}}}[(0, 
   0.7%    98.1%       0.045s       2.27e-06s     C     20000        2   Alloc
   0.3%    98.4%       0.020s       1.02e-06s     C     20000        2   InplaceDimShuffle{x}
   0.2%    98.6%       0.015s       1.50e-06s     C     10000        1   Elemwise{sub,no_inplace}
   0.2%    98.8%       0.014s       1.42e-06s     C     10000        1   Elemwise{gt,no_inplace}
   0.2%    99.1%       0.013s       1.34e-06s     C     10000        1   Sum
   0.2%    99.3%       0.013s       1.29e-06s     C     10000        1   Elemwise{neg,no_inplace}
   0.2%    99.4%       0.012s       6.00e-07s     C     20000        2   Shape_i{0}
   0.2%    99.6%       0.010s       9.84e-07s     C     10000        1   InplaceDimShuffle{1,0}
   0.1%    99.7%       0.010s       9.58e-07s     C     10000        1   Elemwise{Composite{[sub(neg(i0), i1)]}}[(0, 0)]
   0.1%    99.8%       0.007s       6.95e-07s     C     10000        1   Elemwise{Cast{float64}}
   0.1%    99.9%       0.005s       5.46e-07s     C     10000        1   Elemwise{inv,no_inplace}
   0.1%   100.0%       0.005s       4.88e-07s     C     10000        1   Elemwise{Composite{[sub(i0, mul(i1, i2))]}}[(0, 0)]
   ... (remaining 0 Ops account for   0.00%(0.00s) of the runtime)

Apply
------
<% time> <sum %> <apply time> <time per call> <#call> <id> <Apply name>
  51.0%    51.0%       3.319s       3.32e-04s   10000     7 CGemv{inplace}(Alloc.0, TensorConstant{1.0}, x, w, TensorConstant{0.0})
  36.0%    87.0%       2.345s       2.35e-04s   10000    18 CGemv{inplace}(w, TensorConstant{-0.1}, x.T, Elemwise{Composite{[Composite{[Compo
   6.9%    93.9%       0.452s       4.52e-05s   10000    13 Elemwise{Composite{[Composite{[Composite{[sub(mul(i0, i1), neg(i2))]}(i0, scalar_
   1.8%    95.7%       0.116s       1.16e-05s   10000    16 Elemwise{Composite{[Composite{[Composite{[Composite{[mul(i0, add(i1, i2))]}(i0, n
   1.7%    97.4%       0.109s       1.09e-05s   10000    14 Elemwise{ScalarSigmoid{output_types_preference=transfer_type{0}}}[(0, 0)](Elemwis
   0.5%    97.9%       0.031s       3.13e-06s   10000    12 Alloc(Elemwise{inv,no_inplace}.0, Shape_i{0}.0)
   0.2%    98.1%       0.015s       1.50e-06s   10000     4 Elemwise{sub,no_inplace}(TensorConstant{(1,) of 1.0}, y)
   0.2%    98.3%       0.014s       1.42e-06s   10000    15 Elemwise{gt,no_inplace}(Elemwise{ScalarSigmoid{output_types_preference=transfer_t
   0.2%    98.5%       0.014s       1.40e-06s   10000     5 Alloc(TensorConstant{0.0}, Shape_i{0}.0)
   0.2%    98.7%       0.013s       1.34e-06s   10000    17 Sum(Elemwise{Composite{[Composite{[Composite{[Composite{[mul(i0, add(i1, i2))]}(i
   0.2%    98.9%       0.013s       1.33e-06s   10000     0 InplaceDimShuffle{x}(b)
   0.2%    99.1%       0.013s       1.29e-06s   10000    11 Elemwise{neg,no_inplace}(Elemwise{Composite{[sub(neg(i0), i1)]}}[(0, 0)].0)
   0.2%    99.3%       0.010s       9.84e-07s   10000     2 InplaceDimShuffle{1,0}(x)
   0.1%    99.4%       0.010s       9.58e-07s   10000     9 Elemwise{Composite{[sub(neg(i0), i1)]}}[(0, 0)](CGemv{inplace}.0, InplaceDimShuff
   0.1%    99.6%       0.007s       7.11e-07s   10000     6 InplaceDimShuffle{x}(Shape_i{0}.0)
   0.1%    99.7%       0.007s       6.95e-07s   10000     8 Elemwise{Cast{float64}}(InplaceDimShuffle{x}.0)
   0.1%    99.8%       0.006s       6.18e-07s   10000     1 Shape_i{0}(x)
   0.1%    99.8%       0.006s       5.82e-07s   10000     3 Shape_i{0}(y)
   0.1%    99.9%       0.005s       5.46e-07s   10000    10 Elemwise{inv,no_inplace}(Elemwise{Cast{float64}}.0)
   0.1%   100.0%       0.005s       4.88e-07s   10000    19 Elemwise{Composite{[sub(i0, mul(i1, i2))]}}[(0, 0)](b, TensorConstant{0.1}, Sum.0
   ... (remaining 0 Apply instances account for 0.00%(0.00s) of the runtime)

Function profiling
==================
  Message: predict
  Time in 1 calls to Function.__call__: 4.870892e-04s
  Time in Function.fn.__call__: 4.608631e-04s (94.616%)
  Time in thunks: 4.491806e-04s (92.217%)
  Total compile time: 7.993293e-02s
    Theano Optimizer time: 7.383800e-02s
       Theano validate time: 2.010584e-03s
    Theano Linker time (includes C, CUDA code generation/compiling): 4.319906e-03s

Class
---
<% time> <sum %> <apply time> <time per call> <type> <#call> <#apply> <Class name>
  94.2%    94.2%       0.000s       4.23e-04s     C        1        1   <class 'theano.tensor.blas_c.CGemv'>
   4.0%    98.2%       0.000s       1.81e-05s     C        1        1   <class 'theano.tensor.elemwise.Elemwise'>
   0.7%    98.9%       0.000s       3.10e-06s     C        1        1   <class 'theano.tensor.basic.Alloc'>
   0.6%    99.5%       0.000s       2.86e-06s     C        1        1   <class 'theano.tensor.elemwise.DimShuffle'>
   0.5%   100.0%       0.000s       2.15e-06s     C        1        1   <class 'theano.tensor.opt.Shape_i'>
   ... (remaining 0 Classes account for   0.00%(0.00s) of the runtime)

Ops
---
<% time> <sum %> <apply time> <time per call> <type> <#call> <#apply> <Op name>
  94.2%    94.2%       0.000s       4.23e-04s     C        1        1   CGemv{inplace}
   4.0%    98.2%       0.000s       1.81e-05s     C        1        1   Elemwise{Composite{[Composite{[Composite{[Composite{[GT(scalar_sigmoid
   0.7%    98.9%       0.000s       3.10e-06s     C        1        1   Alloc
   0.6%    99.5%       0.000s       2.86e-06s     C        1        1   InplaceDimShuffle{x}
   0.5%   100.0%       0.000s       2.15e-06s     C        1        1   Shape_i{0}
   ... (remaining 0 Ops account for   0.00%(0.00s) of the runtime)

Apply
------
<% time> <sum %> <apply time> <time per call> <#call> <id> <Apply name>
  94.2%    94.2%       0.000s       4.23e-04s      1     3 CGemv{inplace}(Alloc.0, TensorConstant{1.0}, x, w, TensorConstant{0.0})
   4.0%    98.2%       0.000s       1.81e-05s      1     4 Elemwise{Composite{[Composite{[Composite{[Composite{[GT(scalar_sigmoid(i0), i1)]}
   0.7%    98.9%       0.000s       3.10e-06s      1     2 Alloc(TensorConstant{0.0}, Shape_i{0}.0)
   0.6%    99.5%       0.000s       2.86e-06s      1     0 InplaceDimShuffle{x}(b)
   0.5%   100.0%       0.000s       2.15e-06s      1     1 Shape_i{0}(x)
   ... (remaining 0 Apply instances account for 0.00%(0.00s) of the runtime)

Function profiling
==================
  Message: Sum of all printed profiles at exit
  Time in 10001 calls to Function.__call__: 7.171718e+00s
  Time in Function.fn.__call__: 6.687153e+00s (93.243%)
  Time in thunks: 6.511724e+00s (90.797%)
  Total compile time: 7.349820e-01s
    Theano Optimizer time: 6.715190e-01s
       Theano validate time: 1.461720e-02s
    Theano Linker time (includes C, CUDA code generation/compiling): 3.081584e-02s

  [...]









Compilation pipeline


[image: ../_images/pipeline1.png]



Inplace optimization



		2 type of inplace operations:
		An op that return a view on its inputs (e.g. reshape, inplace transpose)


		An op that write the output on the inputs memory space








		This allows some memory optimization


		The Op must tell Theano if they work inplace


		Inplace Op add constraints to the order of execution








Conditions


IfElse



		Build condition over symbolic variables.


		IfElse Op takes a boolean condition and two variables to compute as input.


		While Switch Op evaluates both ‘output’ variables, IfElse Op is lazy and only
evaluates one variable respect to the condition.





IfElse Example: Comparison with Switch


import time

import numpy

import theano
from theano import tensor as tt
from theano.ifelse import ifelse

a, b = tt.scalars('a', 'b')
x, y = tt.matrices('x', 'y')

z_switch = tt.switch(tt.lt(a, b), tt.mean(x), tt.mean(y))
z_lazy = ifelse(tt.lt(a, b), tt.mean(x), tt.mean(y))

f_switch = theano.function([a, b, x, y], z_switch)
f_lazyifelse = theano.function([a, b, x, y], z_lazy)

val1 = 0.
val2 = 1.
big_mat1 = numpy.ones((10000, 1000))
big_mat2 = numpy.ones((10000, 1000))

n_times = 10

tic = time.clock()
for i in xrange(n_times):
    f_switch(val1, val2, big_mat1, big_mat2)
print 'time spent evaluating both values %f sec' % (time.clock() - tic)

tic = time.clock()
for i in xrange(n_times):
    f_lazyifelse(val1, val2, big_mat1, big_mat2)
print 'time spent evaluating one value %f sec' % (time.clock() - tic)






IfElse Op spend less time (about an half) than Switch since it computes only
one variable instead of both.


>>> python ifelse_switch.py
time spent evaluating both values 0.230000 sec
time spent evaluating one value 0.120000 sec






Note that IfElse condition is a boolean while Switch condition is a tensor, so
Switch is more general.


It is actually important to use  linker='vm' or linker='cvm',
otherwise IfElse will compute both variables and take the same computation
time as the Switch Op. The linker is not currently set by default to ‘cvm’ but
it will be in a near future.





Loops


Scan



		General form of recurrence, which can be used for looping.


		Reduction and map (loop over the leading dimensions) are special cases of Scan


		You ‘scan’ a function along some input sequence, producing an output at each time-step


		The function can see the previous K time-steps of your function


		sum() could be computed by scanning the z + x(i) function over a list, given an initial state of z=0.


		Often a for-loop can be expressed as a scan() operation, and scan is the closest that Theano comes to looping.


		The advantage of using scan over for loops
		The number of iterations to be part of the symbolic graph


		Minimizes GPU transfers if GPU is involved


		Compute gradients through sequential steps


		Slightly faster then using a for loop in Python with a compiled Theano function


		Can lower the overall memory usage by detecting the actual amount of memory needed











Scan Example: Computing pow(A,k)


import theano
import theano.tensor as tt

k = tt.iscalar("k")
A = tt.vector("A")


def inner_fct(prior_result, A):
    return prior_result * A
# Symbolic description of the result
result, updates = theano.scan(fn=inner_fct,
                              outputs_info=tt.ones_like(A),
                              non_sequences=A, n_steps=k)

# Scan has provided us with A**1 through A**k.  Keep only the last
# value. Scan notices this and does not waste memory saving them.
final_result = result[-1]

power = theano.function(inputs=[A, k],
                        outputs=final_result,
                        updates=updates)

print power(range(10), 2)
#[  0.   1.   4.   9.  16.  25.  36.  49.  64.  81.]






Scan Example: Calculating a Polynomial


import numpy

import theano
import theano.tensor as tt

coefficients = theano.tensor.vector("coefficients")
x = tt.scalar("x")
max_coefficients_supported = 10000

# Generate the components of the polynomial
full_range = theano.tensor.arange(max_coefficients_supported)
components, updates = theano.scan(fn=lambda coeff, power, free_var:
                                  coeff * (free_var ** power),
                                  outputs_info=None,
                                  sequences=[coefficients, full_range],
                                  non_sequences=x)
polynomial = components.sum()
calculate_polynomial = theano.function(inputs=[coefficients, x],
                                       outputs=polynomial)

test_coeff = numpy.asarray([1, 0, 2], dtype=numpy.float32)
print calculate_polynomial(test_coeff, 3)
# 19.0









Exercise 4



		Run both examples


		Modify and execute the polynomial example to have the reduction done by scan








Exercise 5



		In the last exercises, do you see a speed up with the GPU?


		Where does it come from? (Use ProfileMode)


		Is there something we can do to speed up the GPU version?








Printing/Drawing Theano graphs



		Pretty Printing





theano.printing.pprint(variable)


>>> theano.printing.pprint(prediction)
gt((TensorConstant{1} / (TensorConstant{1} + exp(((-(x \\dot w)) - b)))),TensorConstant{0.5})







		Debug Print





theano.printing.debugprint({fct, variable, list of variables})


>>> theano.printing.debugprint(prediction)
Elemwise{gt,no_inplace} [@181772236] ''
 |Elemwise{true_div,no_inplace} [@181746668] ''
 | |InplaceDimShuffle{x} [@181746412] ''
 | | |TensorConstant{1} [@181745836]
 | |Elemwise{add,no_inplace} [@181745644] ''
 | | |InplaceDimShuffle{x} [@181745420] ''
 | | | |TensorConstant{1} [@181744844]
 | | |Elemwise{exp,no_inplace} [@181744652] ''
 | | | |Elemwise{sub,no_inplace} [@181744012] ''
 | | | | |Elemwise{neg,no_inplace} [@181730764] ''
 | | | | | |dot [@181729676] ''
 | | | | | | |x [@181563948]
 | | | | | | |w [@181729964]
 | | | | |InplaceDimShuffle{x} [@181743788] ''
 | | | | | |b [@181730156]
 |InplaceDimShuffle{x} [@181771788] ''
 | |TensorConstant{0.5} [@181771148]
>>> theano.printing.debugprint(predict)
Elemwise{Composite{neg,{sub,{{scalar_sigmoid,GT},neg}}}} [@183160204] ''   2
 |dot [@183018796] ''   1
 | |x [@183000780]
 | |w [@183000812]
 |InplaceDimShuffle{x} [@183133580] ''   0
 | |b [@183000876]
 |TensorConstant{[ 0.5]} [@183084108]







		Picture Printing of Graphs





>>> theano.printing.pydotprint_variables(prediction)






[image: ../_images/logreg_pydotprint_prediction1.png]
All pydotprint* requires graphviz and pydot


>>> theano.printing.pydotprint(predict)






[image: ../_images/logreg_pydotprint_predic1.png]
>>> theano.printing.pydotprint(train) # This is a small train example!






[image: ../_images/logreg_pydotprint_train1.png]



Debugging



		Run with the Theano flag compute_test_value = {``off'',``ignore'', ``warn'', ``raise''}
		Run the code as we create the graph


		Allows you to find the bug earlier (ex: shape mismatch)


		Makes it easier to identify where the problem is in your code


		Use the value of constants and shared variables directly


		For pure symbolic variables uses x.tag.test_value = numpy.random.rand(5,10)








		Run with the flag mode=FAST_COMPILE
		Few optimizations


		Run Python code (better error messages and can be debugged interactively in the Python debugger)








		Run with the flag mode=DebugMode
		100-1000x slower


		Test all optimization steps from the original graph to the final graph


		Checks many things that Op should/shouldn’t do


		Executes both the Python and C code versions














Known limitations



		Compilation phase distinct from execution phase
		Use a_tensor_variable.eval() to make this less visible








		Compilation time can be significant
		Amortize it with functions over big input or reuse functions








		Execution overhead
		We have worked on this, but more work needed


		So needs a certain number of operations to be useful








		Compilation time superlinear in the size of the graph.
		Hundreds of nodes is fine


		Disabling a few optimizations can speed up compilation


		Usually too many nodes indicates a problem with the graph
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Proactive Merging


Merge is done now as an optimization.
But if Merging was done at graph construction time, things like #476 would work.
Additionally, memo-izing at graph construction time would make it possible to
define recursive formula with recursive python functions (e.g. Fibonacci).
Currently the merge optimization would make the Fibonacci series linear, but the
size of the program used to express the program would be exponential.
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Intermediate Language


It would be nice to be able to use Theano from other languages.
This requires two things: a way to communicate the expression to the theano
compiler, and a way to pass data to and from the compiled function.


One way to do this would be define a textual representation of theano graphs.
A Scheme-like language seems appropriate.  Perhaps just scheme would be
appropriate.


How to pass shared variables?






          

      

      

    


    
        © Copyright 2008--2015, LISA lab.
      Last updated on Mar 27, 2015.
      Created using Sphinx 1.2.2.
    

  

proposals/dp_optimization.html


    
      Navigation


      
        		
          index


        		
          modules |


        		Theano 0.7 documentation »

 
      


    


    
      
          
            
  
DP Instruction Selection


Read Ch 9 of Modern Compiler Implementation about instruction selection.
We should probably be doing graph optimization totally differently:
Optimizations only add new ways of implementing something, they do not replace
the old way.  Every graph node (apply) as a cost, and Dynamic Programming (DP)
is used to select the minimum cost graph.


The advantage of this approach is that optimizations do not have to run in such
a careful order, and graph selection would be much faster.


Think about how aliasing and destructive operations (the destroy-handler) would
fit in this approach.
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Proposal for New Linking Strategy supporting Lazy Evaluation: Op.make_thunk



Note


Proposal made June 2010.





Motivation


Conditional evaluation is useful to describe many optimization algorithms where
the update expressions depend on internal state.


True conditional evaluation requires lazy graph evaluation.
Without lazy graph evaluation, the runtime of a graph can be exponential in the
number of conditionals instead of linear.  No one waits an exponential amount of
time, so instead people work around this problem in various other ways, but it
would be better if theano had an ‘if-then-else’ expression (call it cond).


A lazily-evaluted ‘cond’ requires a linker to use a different method for
interacting with Ops.  Neither the current perform() nor c_code() approaches
support lazy evaluation.
Why do perform (and c_code) not handle lazy evaluation?
The syntax of the current perform() could be extended to be compatible with lazy
evaluation. For example, the  linker could set all inputs to None, and use the
return value from perform() to see which inputs are required.  But all the Ops
that currently implement a perform() function would be broken because their
perform implementations do not ask for inputs before using them.  I don’t see a
way around this.  The same restriction applies to c_code.


The way around this is to introduce a new interface for the linker to talk to
Ops.  I propose that we add an Op.make_thunk() that returns an object satisfying
this interface.


At the same time, it appears that as we try to integrate PyCUDA Ops another
problem arises.  We would like to use Op.perform() to drive the GPU, but it is
natural to move compilation of the CUDA kernel to a point after make_node() and a
point before perform().   The point where the linker makes an thunk from the Op
seems like a natural choice.


A third motivation for introducing an Op.make_thunk function is to clarify the
relationship between Ops (the classes you implement in Python) and mathematical
operations (the more abstract things in terms of which you think when using
Theano).
I propose that technically an Op, when conditioned by particular inputs,
generates at most one implementation that defines the behaviour of that Op.
In intuitive terms, the abstract mathematical steps that we sometimes talk about regarding Theano
still correspond to Ops – it’s just that these Ops have relatively generic
implementations.
The process of optimization is to specialize those generic implementations
by using information from the rest of the graph.
If we accept that an Op corresponds to at most one implementation,
then it makes sense to ask an Op instance to expose that implementation via a
standard interface (Op.make_thunk).
It does not make sense to pass arguments to Op.make_thunk such as ‘py’ or “c|py”
to tell the Op which implementation to use.  The Op instance represents just one
implementation, and flags such as ‘py’ or ‘c|py’ should be passed to the Op’s
constructor.





Proposal: Op.make_thunk


There are two interface items I propose to add.  The first is a Thunk object
(which we have never had before), and the second is a new function (make_thunk)
in the PureOp class (a superclass of Op) that will return a Thunk.


class Thunk (object):
  """Abstract class / interface

  It describes the interface used by a Theano linker to execute the nodes in a
  graph.  Thunk instances are in correspondance with Apply instances that
  remain in the final form of the graph after optimization.

  """

  lazy = property(...,
     """True means the thunk may trigger lazy evaluation.
      False means the thunk always requires all inputs and computes all
      outputs.
      Consequently False implies that __call__ always returns None
      """

  def __call__(self):
     """Thunk will compute some number (or zero) of outputs and in the case
     that it cannot compute all its outputs for lack of inputs, this function
     will return a list of input indexes that are required.  The linker will
     typically compute those required inputs and then call this
     __call__ function again.
     The thunk is considered to be finished when it returns an empty list or
     None.
     """






class PureOp(object):                       # recall:
                                            # Op inherits from PureOp

    def make_node(self, *inputs):           # leave alone
       ...

    def perform(self, node,
          inputs, output_storage):          # move to `Op` class
       ...

    def make_thunk(self, node,              # new function
          input_computed, output_computed,
          input_registers, output_registers,
          ):
       """
       :type node: Apply instance
       :param node: previous rval from make_node(self, *inputs)

       :type input_computed: list of len-1 lists, with values in (0,1).
       :param input_computed: at runtime, input_computed[i][0]==1 implies
           that the i'th input has been computed and stored at
           input_registers[i][0], and is available for use.
           Otherwise the content of input_registers[i][0] is undefined.

       :type output_computed: list of len-1 lists, with values in (0,1).
       :param output_computed: at runtime, output_computed[i][0]==1 implies
           that the i'th output has already been computed and stored at
           output_registers[i][0].
           Otherwise, output_registers[i][0] will contain either None, or
           a value that was previously computed by this thunk.

       :type input_registers: list of len-1 lists
       :type output_registers: list of len-1 lists

       :param input_registers: the i'th input can be read from
       input_registers[i][0] when input_computed[i][0] == 1.

       :param output_registers: the i'th output must be stored to
       output_registers[i][0], at which point the thunk must set output_computed[i][0] == 1.

       :returns: a Thunk (subclass) instance

       """






The Thunk class can have subclasses that use Op.perform and Op.c_code as we use
them now.  The interface of Thunk is backward-compatible with the thunks built
by the CLinker and PerformLinker.  If a graph contains zero Thunks with
lazy==True, then the current Linkers will continue to work.
The new Thunk interface will support a new LazyLinker that can run programs for
which some thunks have lazy==True.


The Thunk class can have subclasses that are implemented in C, which might help
performance.
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MongoDB DLL Cache


In network environments (like at DIRO on NFS3), a distributed DB like mongo or couch is faster and more
robust to concurrency than the $HOME/.theano.  Also, a single cache could be
shared by multiple users.  This would result in less compilation time, for
everyone, and less stale-cache problems.
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Add tensor attributes


Size, shape, psd, symmetric, triangular, contiguous.
Add these attributes to the TensorType with the option always that they be
‘unknown’.
Add attributes that are useful for optimizations, or useful for code generation.
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